Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.

Detalhes bibliográficos
Autor(a) principal: Fernandes, Antonio Carlos
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/
Resumo: No presente trabalho apresentaremos alguns aspectos do problema Newtoniano de n Corpos. Estudaremos o caso de dois corpos, que tem solução direta, embora não seja possível obter todas as variáveis como função do tempo. No caso n maior ou igual a 3 mostraremos que não existe método para integrar este problema via quadraturas. Podemos tirar apenas algumas informações sobre o caso geral, como a Identidade de Lagrange-Jacobi, o Teorema de Sundman-Weierstrass entre outros. Veremos alguns casos de soluções particulares, que serão chamadas de soluções homográficas. Nestas soluções a forma geométrica da configuração inicial dos corpos é preservada durante o movimento. Veremos condições necessárias sobre as configurações iniciais para que seja possível obter estas soluções. Mostraremos uma relação existente entre estas soluções particulares e os pontos críticos de uma aplicação, que associa a uma configuração a energia total e o momento angular total do sistema. Nestes vários casos, cairemos numa mesma equação algébrica, que será chamada de equação das configurações centrais. Mostraremos, em seguida, que as equações de configurações centrais são equivalentes a um outro conjunto de equações algébricas, que servem também para calcular as chamadas configurações centrais, porém, com estas equações as simetrias do problema ficam mais claras, às vezes. Faremos algumas aplicações diretas destas equações algébricas. Uma subclasse interessante da classe das configurações centrais são as chamadas de equações diferenciais empilhadas, nas quais um subconjunto próprio dos corpos também forma uma configuração central. Nos dois últimos capítulos veremos alguns exemplos de configurações centrais deste tipo, em especial aquelas onde podemos retirar uma massa e ainda ter uma configuração central.
id USP_6962172a6e9d27652c2f8f2afd5072b9
oai_identifier_str oai:teses.usp.br:tde-04062012-103241
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.On central configurations of the n body problem. Planar, Spatial and Stacked central configurations.Andoyer's EquationsCentral ConfigurationConfiguracao CentralConfiguracoes Centrais Empilhadas.Equacoes de AndoyerHomographic Solutionsn--Body problemProblema de n CorposSolucao HomograficaStacked Central ConfigurationsNo presente trabalho apresentaremos alguns aspectos do problema Newtoniano de n Corpos. Estudaremos o caso de dois corpos, que tem solução direta, embora não seja possível obter todas as variáveis como função do tempo. No caso n maior ou igual a 3 mostraremos que não existe método para integrar este problema via quadraturas. Podemos tirar apenas algumas informações sobre o caso geral, como a Identidade de Lagrange-Jacobi, o Teorema de Sundman-Weierstrass entre outros. Veremos alguns casos de soluções particulares, que serão chamadas de soluções homográficas. Nestas soluções a forma geométrica da configuração inicial dos corpos é preservada durante o movimento. Veremos condições necessárias sobre as configurações iniciais para que seja possível obter estas soluções. Mostraremos uma relação existente entre estas soluções particulares e os pontos críticos de uma aplicação, que associa a uma configuração a energia total e o momento angular total do sistema. Nestes vários casos, cairemos numa mesma equação algébrica, que será chamada de equação das configurações centrais. Mostraremos, em seguida, que as equações de configurações centrais são equivalentes a um outro conjunto de equações algébricas, que servem também para calcular as chamadas configurações centrais, porém, com estas equações as simetrias do problema ficam mais claras, às vezes. Faremos algumas aplicações diretas destas equações algébricas. Uma subclasse interessante da classe das configurações centrais são as chamadas de equações diferenciais empilhadas, nas quais um subconjunto próprio dos corpos também forma uma configuração central. Nos dois últimos capítulos veremos alguns exemplos de configurações centrais deste tipo, em especial aquelas onde podemos retirar uma massa e ainda ter uma configuração central.In this work we present some aspects of the Newtonian n--body problem. We study the case of two bodies, which have a straightforward solution, although we can not get all the variables as functions of the time. For n greater or equal to 3 we show that there is no method to integrate this problem by quadratures. We can have just some information about the general case, as the Lagrange-Jacobi\'s Identity the Sundman-Weierstrass\'s theorem and others. We will see some cases of particular solutions, which will be called homographic solutions. In these solutions the geometric shape of initial configuration of the bodies is preserved during the movement. We will see necessary conditions on the initial positions that turn possible to obtain these solutions. We show a relation between these particular solutions and critical points of an application, that associate the total energy and total angular momentum of the system. In these several cases, we will fall in same algebraic equation, which we called of the central configurations equations. We show that the central configurations equations are equivalent to another set of algebraic equations, which are also used to compute the central configurations, but with these equations the symmetries of the problem become clearer. We will make some direct applications these algebraic equations. An interesting subclass of the class of central configurations are called stacked differential equations, in which a proper subset of the bodies form a central configuration too. In the last two chapters we will see some examples of central configurations of this kind, especially those where we can remove a mass and still have a central configuration.Biblioteca Digitais de Teses e Dissertações da USPMello, Luis Fernando de OsórioFernandes, Antonio Carlos2011-11-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:31Zoai:teses.usp.br:tde-04062012-103241Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:31Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
On central configurations of the n body problem. Planar, Spatial and Stacked central configurations.
title Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
spellingShingle Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
Fernandes, Antonio Carlos
Andoyer's Equations
Central Configuration
Configuracao Central
Configuracoes Centrais Empilhadas.
Equacoes de Andoyer
Homographic Solutions
n--Body problem
Problema de n Corpos
Solucao Homografica
Stacked Central Configurations
title_short Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
title_full Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
title_fullStr Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
title_full_unstemmed Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
title_sort Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
author Fernandes, Antonio Carlos
author_facet Fernandes, Antonio Carlos
author_role author
dc.contributor.none.fl_str_mv Mello, Luis Fernando de Osório
dc.contributor.author.fl_str_mv Fernandes, Antonio Carlos
dc.subject.por.fl_str_mv Andoyer's Equations
Central Configuration
Configuracao Central
Configuracoes Centrais Empilhadas.
Equacoes de Andoyer
Homographic Solutions
n--Body problem
Problema de n Corpos
Solucao Homografica
Stacked Central Configurations
topic Andoyer's Equations
Central Configuration
Configuracao Central
Configuracoes Centrais Empilhadas.
Equacoes de Andoyer
Homographic Solutions
n--Body problem
Problema de n Corpos
Solucao Homografica
Stacked Central Configurations
description No presente trabalho apresentaremos alguns aspectos do problema Newtoniano de n Corpos. Estudaremos o caso de dois corpos, que tem solução direta, embora não seja possível obter todas as variáveis como função do tempo. No caso n maior ou igual a 3 mostraremos que não existe método para integrar este problema via quadraturas. Podemos tirar apenas algumas informações sobre o caso geral, como a Identidade de Lagrange-Jacobi, o Teorema de Sundman-Weierstrass entre outros. Veremos alguns casos de soluções particulares, que serão chamadas de soluções homográficas. Nestas soluções a forma geométrica da configuração inicial dos corpos é preservada durante o movimento. Veremos condições necessárias sobre as configurações iniciais para que seja possível obter estas soluções. Mostraremos uma relação existente entre estas soluções particulares e os pontos críticos de uma aplicação, que associa a uma configuração a energia total e o momento angular total do sistema. Nestes vários casos, cairemos numa mesma equação algébrica, que será chamada de equação das configurações centrais. Mostraremos, em seguida, que as equações de configurações centrais são equivalentes a um outro conjunto de equações algébricas, que servem também para calcular as chamadas configurações centrais, porém, com estas equações as simetrias do problema ficam mais claras, às vezes. Faremos algumas aplicações diretas destas equações algébricas. Uma subclasse interessante da classe das configurações centrais são as chamadas de equações diferenciais empilhadas, nas quais um subconjunto próprio dos corpos também forma uma configuração central. Nos dois últimos capítulos veremos alguns exemplos de configurações centrais deste tipo, em especial aquelas onde podemos retirar uma massa e ainda ter uma configuração central.
publishDate 2011
dc.date.none.fl_str_mv 2011-11-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/
url http://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256659791970304