On the energetic analysis of autonomous quantum systems

Detalhes bibliográficos
Autor(a) principal: Malavazi, André Hernandes Alves
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76131/tde-17082022-092344/
Resumo: During the last decades, there have been many theoretical and experimental advances both in the extension of thermodynamics to comprise microscopic systems out-of-equilibrium and in the understanding of quantum mechanics. Along with the state-of-the-art capability of controlling fragile quantum systems in a wide variety of physical platforms, this context has paved the way for the current strategic efforts to develop a thermodynamic theory of quantum systems. In this sense, the research field coined as quantum thermodynamics (QT) already plays a key role in the design and development of future quantum-based technologies. More specifically, QT aims both to apply the usual thermodynamic concepts and notions to describe arbitrary non-equilibrium quantum systems and to understand the emergence of classical thermodynamic behaviour from the underlying fundamentally quantum dynamics. However, despite all current progress, there is still no consolidated formalism for a general thermodynamic description of fully autonomous quantum objects. Besides, the lack of consensus on some central aspects, such as the definitions of quantum counterparts of thermodynamic quantities, is particularly notorious. In this thesis, we focus on the energetic analysis within autonomous quantum systems. To this aim, we propose a novel and general formalism for a dynamic description of the energy exchanges between interacting subsystems. From the Schmidt decomposition approach, we identify effective Hamiltonians as the representative operators for characterizing the local internal energies, whose expectation values satisfy the usual thermodynamic notion of energy additivity. In contrast to the currently used methodologies, such procedure treats the subsystems with equal footing and do not rely on any sort of approximations and additional hypotheses, e.g., semi-classical description, weak-coupling regime, strict energy conservation and Markovian dynamics. In short, our proposal contributes to the development of QT by providing a new formalism that does not suffer from the usual restrictive shortcomings and establishes a new and exact route for defining other general thermodynamic quantities to the quantum regime.
id USP_6a0cba886356f8cde784430f19dd511d
oai_identifier_str oai:teses.usp.br:tde-17082022-092344
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling On the energetic analysis of autonomous quantum systemsSobre a análise energética de sistemas quânticos autônomos.Open quantum systemsQuantum thermodynamicsSistemas quânticos abertosTermodinâmica quânticaDuring the last decades, there have been many theoretical and experimental advances both in the extension of thermodynamics to comprise microscopic systems out-of-equilibrium and in the understanding of quantum mechanics. Along with the state-of-the-art capability of controlling fragile quantum systems in a wide variety of physical platforms, this context has paved the way for the current strategic efforts to develop a thermodynamic theory of quantum systems. In this sense, the research field coined as quantum thermodynamics (QT) already plays a key role in the design and development of future quantum-based technologies. More specifically, QT aims both to apply the usual thermodynamic concepts and notions to describe arbitrary non-equilibrium quantum systems and to understand the emergence of classical thermodynamic behaviour from the underlying fundamentally quantum dynamics. However, despite all current progress, there is still no consolidated formalism for a general thermodynamic description of fully autonomous quantum objects. Besides, the lack of consensus on some central aspects, such as the definitions of quantum counterparts of thermodynamic quantities, is particularly notorious. In this thesis, we focus on the energetic analysis within autonomous quantum systems. To this aim, we propose a novel and general formalism for a dynamic description of the energy exchanges between interacting subsystems. From the Schmidt decomposition approach, we identify effective Hamiltonians as the representative operators for characterizing the local internal energies, whose expectation values satisfy the usual thermodynamic notion of energy additivity. In contrast to the currently used methodologies, such procedure treats the subsystems with equal footing and do not rely on any sort of approximations and additional hypotheses, e.g., semi-classical description, weak-coupling regime, strict energy conservation and Markovian dynamics. In short, our proposal contributes to the development of QT by providing a new formalism that does not suffer from the usual restrictive shortcomings and establishes a new and exact route for defining other general thermodynamic quantities to the quantum regime.Durante as últimas décadas, houve muitos avanços teóricos e experimentais tanto na extensão da termodinâmica para abranger sistemas microscópicos fora de equilíbrio quanto na compreensão da mecânica quântica. Somada a capacidade de última geração de controlar sistemas quânticos frágeis em uma ampla variedade de plataformas físicas, esse contexto abriu caminho para os atuais esforços estratégicos para desenvolver uma teoria termodinâmica de sistemas quânticos. Nesse sentido, o campo de pesquisa cunhado como termodinâmica quântica (TQ) já desempenha um papel fundamental no projeto e desenvolvimento de futuras tecnologias baseadas em fenômenos quânticos. Mais especificamente, a TQ visa tanto aplicar os conceitos e as noções termodinâmicas usuais para descrever sistemas quânticos arbitrários fora do equilíbrio quanto entender o surgimento do comportamento termodinâmico clássico a partir da dinâmica fundamentalmente quântica subjacente. No entanto, apesar de todo o progresso atual, ainda não existe um formalismo consolidado para uma descrição termodinâmica geral de objetos quânticos totalmente autônomos. Além disso, é particularmente notória a falta de consenso em relação a alguns aspectos centrais, como as definições de análogos quânticos de grandezas termodinâmicas. Nesta tese, focamos na análise energética em sistemas quânticos autônomos. Para isso, propomos um novo formalismo geral para uma descrição dinâmica das trocas energéticas entre subsistemas interagentes. A partir da abordagem da decomposição de Schmidt, identificamos Hamiltonianos efetivos como os operadores representativos para caracterização das energias internas locais, cujos valores esperados satisfazem a noção termodinâmica usual da aditividade de energia. Ao contrário das metodologias atualmente utilizadas, tal procedimento trata os subsistemas em pé de igualdade e não depende de nenhum tipo de aproximações e hipóteses adicionais, por exemplo, descrição semiclássica, regime de acoplamento fraco, conservação de energia estrita e dinâmica Markoviana. Em suma, nossa proposta contribui para o desenvolvimento da TQ fornecendo um novo formalismo que não sofre das restrições usuais e estabelece uma nova e exata rota para definir outras grandezas termodinâmicas gerais para o regime quântico.Biblioteca Digitais de Teses e Dissertações da USPBrito, Frederico Borges deMalavazi, André Hernandes Alves2022-05-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76131/tde-17082022-092344/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-09-13T12:35:02Zoai:teses.usp.br:tde-17082022-092344Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-09-13T12:35:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On the energetic analysis of autonomous quantum systems
Sobre a análise energética de sistemas quânticos autônomos.
title On the energetic analysis of autonomous quantum systems
spellingShingle On the energetic analysis of autonomous quantum systems
Malavazi, André Hernandes Alves
Open quantum systems
Quantum thermodynamics
Sistemas quânticos abertos
Termodinâmica quântica
title_short On the energetic analysis of autonomous quantum systems
title_full On the energetic analysis of autonomous quantum systems
title_fullStr On the energetic analysis of autonomous quantum systems
title_full_unstemmed On the energetic analysis of autonomous quantum systems
title_sort On the energetic analysis of autonomous quantum systems
author Malavazi, André Hernandes Alves
author_facet Malavazi, André Hernandes Alves
author_role author
dc.contributor.none.fl_str_mv Brito, Frederico Borges de
dc.contributor.author.fl_str_mv Malavazi, André Hernandes Alves
dc.subject.por.fl_str_mv Open quantum systems
Quantum thermodynamics
Sistemas quânticos abertos
Termodinâmica quântica
topic Open quantum systems
Quantum thermodynamics
Sistemas quânticos abertos
Termodinâmica quântica
description During the last decades, there have been many theoretical and experimental advances both in the extension of thermodynamics to comprise microscopic systems out-of-equilibrium and in the understanding of quantum mechanics. Along with the state-of-the-art capability of controlling fragile quantum systems in a wide variety of physical platforms, this context has paved the way for the current strategic efforts to develop a thermodynamic theory of quantum systems. In this sense, the research field coined as quantum thermodynamics (QT) already plays a key role in the design and development of future quantum-based technologies. More specifically, QT aims both to apply the usual thermodynamic concepts and notions to describe arbitrary non-equilibrium quantum systems and to understand the emergence of classical thermodynamic behaviour from the underlying fundamentally quantum dynamics. However, despite all current progress, there is still no consolidated formalism for a general thermodynamic description of fully autonomous quantum objects. Besides, the lack of consensus on some central aspects, such as the definitions of quantum counterparts of thermodynamic quantities, is particularly notorious. In this thesis, we focus on the energetic analysis within autonomous quantum systems. To this aim, we propose a novel and general formalism for a dynamic description of the energy exchanges between interacting subsystems. From the Schmidt decomposition approach, we identify effective Hamiltonians as the representative operators for characterizing the local internal energies, whose expectation values satisfy the usual thermodynamic notion of energy additivity. In contrast to the currently used methodologies, such procedure treats the subsystems with equal footing and do not rely on any sort of approximations and additional hypotheses, e.g., semi-classical description, weak-coupling regime, strict energy conservation and Markovian dynamics. In short, our proposal contributes to the development of QT by providing a new formalism that does not suffer from the usual restrictive shortcomings and establishes a new and exact route for defining other general thermodynamic quantities to the quantum regime.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76131/tde-17082022-092344/
url https://www.teses.usp.br/teses/disponiveis/76/76131/tde-17082022-092344/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257047285891072