Implementation and simulation of drift-diffusion models for organic mixed conductor devices

Detalhes bibliográficos
Autor(a) principal: Unigarro, Andres David Peña
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-19082022-111554/
Resumo: In the past years, organic electrochemical transistors (OECTs) have emerged as potential transducers inapplications that require the conversion of ion fluxes to electronic current. For the rational optimization and understanding of the fundamentals of OECTs and OECT-based applications, however, it is essential to have theoretical models capable to predict experimental data. Within drift-diffusion models,ion flux from the electrolyte into the organic semiconducting layer is considered to take place due to the action of an electrical field, but also because of diffusion processes generated by the concentration gradients. The governing equation of the drift-diffusion model is the Nernst-Planck equation.Thus, in this project, a numerical approach is followed in order to solve the Nernst-Planck equation in one dimension,and model the ion migration from the electrolyte to the semiconductor. To evaluate the accuracy of the implementation, standard boundary conditions used in the literature to solve analytically the drift-diffusion equations were considered.In doing so,the numerical results were in good agreement with the analytical solutions,achieving maximum errors in the order of 1%. Aiming to a better representation of OECTs, closed boundary conditions are considered. Here, the temporal evolution of the concentration profiles showed a convergence to an exponential steady state distribution, which is in good agreement with the result expected theoretically. A further situation investigated was the consideration of a non-uniform electric field acting on the system, assumed to be finite in the electrolyte regionandzerointhe semiconductor.This Consideration impacts principally the temporal evolution of the concentration in each region. In order to consider the distinct compositions in electrolyte and semiconductors, different values of diffusion coefficients were introduced for each region. This extension has visible impacts in the time that the system needs to achieve the steady state. Moreover, the introduction of the chemical potential gradient as the driving force of diffusion leaded to significant variations in the results obtained with the model. Here,the so-called uphill diffusion reported in the literature was observed. With the numerical approach,it was possible to consider different types of pulsed gate voltages, which allowed to simulate the charge and discharge processes of OECTs. For all cases, oscillatory curves similar to experimental measurements were obtained. Therefore, the numerical approach allowed to go beyond the analytical description, and develop an extensive investigation of the impact that different considerations have in the results.
id USP_6a609707457081f392581f9cef6b413e
oai_identifier_str oai:teses.usp.br:tde-19082022-111554
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Implementation and simulation of drift-diffusion models for organic mixed conductor devicesImplementação e simulação de modelos drift-diffusion para dispositivos de condutores orgânicos mistos.Diferenças finitasDrift-diffusionDrift-diffusionEletrônica orgânicaFinite differencesOECTOECTOrganicelectronicsIn the past years, organic electrochemical transistors (OECTs) have emerged as potential transducers inapplications that require the conversion of ion fluxes to electronic current. For the rational optimization and understanding of the fundamentals of OECTs and OECT-based applications, however, it is essential to have theoretical models capable to predict experimental data. Within drift-diffusion models,ion flux from the electrolyte into the organic semiconducting layer is considered to take place due to the action of an electrical field, but also because of diffusion processes generated by the concentration gradients. The governing equation of the drift-diffusion model is the Nernst-Planck equation.Thus, in this project, a numerical approach is followed in order to solve the Nernst-Planck equation in one dimension,and model the ion migration from the electrolyte to the semiconductor. To evaluate the accuracy of the implementation, standard boundary conditions used in the literature to solve analytically the drift-diffusion equations were considered.In doing so,the numerical results were in good agreement with the analytical solutions,achieving maximum errors in the order of 1%. Aiming to a better representation of OECTs, closed boundary conditions are considered. Here, the temporal evolution of the concentration profiles showed a convergence to an exponential steady state distribution, which is in good agreement with the result expected theoretically. A further situation investigated was the consideration of a non-uniform electric field acting on the system, assumed to be finite in the electrolyte regionandzerointhe semiconductor.This Consideration impacts principally the temporal evolution of the concentration in each region. In order to consider the distinct compositions in electrolyte and semiconductors, different values of diffusion coefficients were introduced for each region. This extension has visible impacts in the time that the system needs to achieve the steady state. Moreover, the introduction of the chemical potential gradient as the driving force of diffusion leaded to significant variations in the results obtained with the model. Here,the so-called uphill diffusion reported in the literature was observed. With the numerical approach,it was possible to consider different types of pulsed gate voltages, which allowed to simulate the charge and discharge processes of OECTs. For all cases, oscillatory curves similar to experimental measurements were obtained. Therefore, the numerical approach allowed to go beyond the analytical description, and develop an extensive investigation of the impact that different considerations have in the results.Nos últimos anos, os transistores eletroquímicos orgânicos (OECTs) surgiram como transdutores em aplicações que requerem a conversão de fluxos iônicos em corrente eletrônica. Para a otimização e compreensão dos fundamentos das OECTs e suas aplicações, é essencial ter modelos teóricos capazes de prever dados experimentais. Nos modelos de drift-diffusion, o fluxo de íons do eletrólito para a camada semicondutora orgânica é considerado como tendo lugar devido à ação de um campo elétrico, mas também devido aos processos de difusão gerados pelos gradientes de concentração. A equação governante do modelo de drift-diffusion é a equação de Nernst-Planck. Assim, neste projeto, uma abordagem numérica é seguida para resolver a equação de Nernst-Planck em uma dimensão e modelar a migração iônica do eletrólito para o semicondutor. Para avaliar a precisão da implementação, foram consideradas as condições de contorno padrão utilizadas na literatura para resolver analiticamente as equações de drift-diffusion. Ao fazê-lo, os resultados numéricos obtidos mostraram boa concordância com as soluções analíticas, alcançando erros na ordem de 1% .Visando uma melhor representação das OECTs, são consideradas as condições de contorno fechado. Aqui, a evolução temporal dos perfis de concentração mostraram uma convergência para uma distribuição exponencial no estado estacionário, que está em boa concordância com o resultado esperado teoricamente. Adicionalmente, foi considerado um campo elétrico não uniforme atuando sobre o sistema, assumido como finito na região do eletrólito e zero no semicondutor. Esta consideração afeta principalmente a evolução temporal da concentração em cada região. Como objetivo de considerar as composições distintas em eletrólitos e semicondutores, foram introduzidos diferentes valores de coeficientes de difusão para cada região. Esta extensão tem impactos visíveis no tempo que o sistema precisa para alcançar o estado estacionário. Além disso, a introdução do gradiente do potencial químico como a força responsável da difusão dos íons levou a variações significativas nos resultados obtidos como modelo. Aqui, a chamada difusão scendente relatada na literatura foi observada. Com a abordagem numérica, foi possível considerar diferentes tipos de tensões pulsadas no eletrodo da porta, o que permitiu simular os processos de carga e descarga dos OECTs. Para todos os casos, foram obtidas curvas oscilatórias semelhantes às medidas experimentais. Portanto, a abordagem numérica permitiu ir além da descrição analítica, e desenvolver uma extensa investigação do impacto que diferentes considerações têm nos resultados.Biblioteca Digitais de Teses e Dissertações da USPGünther, Florian SteffenUnigarro, Andres David Peña2022-05-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-19082022-111554/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-23T12:03:02Zoai:teses.usp.br:tde-19082022-111554Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-23T12:03:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Implementation and simulation of drift-diffusion models for organic mixed conductor devices
Implementação e simulação de modelos drift-diffusion para dispositivos de condutores orgânicos mistos.
title Implementation and simulation of drift-diffusion models for organic mixed conductor devices
spellingShingle Implementation and simulation of drift-diffusion models for organic mixed conductor devices
Unigarro, Andres David Peña
Diferenças finitas
Drift-diffusion
Drift-diffusion
Eletrônica orgânica
Finite differences
OECT
OECT
Organicelectronics
title_short Implementation and simulation of drift-diffusion models for organic mixed conductor devices
title_full Implementation and simulation of drift-diffusion models for organic mixed conductor devices
title_fullStr Implementation and simulation of drift-diffusion models for organic mixed conductor devices
title_full_unstemmed Implementation and simulation of drift-diffusion models for organic mixed conductor devices
title_sort Implementation and simulation of drift-diffusion models for organic mixed conductor devices
author Unigarro, Andres David Peña
author_facet Unigarro, Andres David Peña
author_role author
dc.contributor.none.fl_str_mv Günther, Florian Steffen
dc.contributor.author.fl_str_mv Unigarro, Andres David Peña
dc.subject.por.fl_str_mv Diferenças finitas
Drift-diffusion
Drift-diffusion
Eletrônica orgânica
Finite differences
OECT
OECT
Organicelectronics
topic Diferenças finitas
Drift-diffusion
Drift-diffusion
Eletrônica orgânica
Finite differences
OECT
OECT
Organicelectronics
description In the past years, organic electrochemical transistors (OECTs) have emerged as potential transducers inapplications that require the conversion of ion fluxes to electronic current. For the rational optimization and understanding of the fundamentals of OECTs and OECT-based applications, however, it is essential to have theoretical models capable to predict experimental data. Within drift-diffusion models,ion flux from the electrolyte into the organic semiconducting layer is considered to take place due to the action of an electrical field, but also because of diffusion processes generated by the concentration gradients. The governing equation of the drift-diffusion model is the Nernst-Planck equation.Thus, in this project, a numerical approach is followed in order to solve the Nernst-Planck equation in one dimension,and model the ion migration from the electrolyte to the semiconductor. To evaluate the accuracy of the implementation, standard boundary conditions used in the literature to solve analytically the drift-diffusion equations were considered.In doing so,the numerical results were in good agreement with the analytical solutions,achieving maximum errors in the order of 1%. Aiming to a better representation of OECTs, closed boundary conditions are considered. Here, the temporal evolution of the concentration profiles showed a convergence to an exponential steady state distribution, which is in good agreement with the result expected theoretically. A further situation investigated was the consideration of a non-uniform electric field acting on the system, assumed to be finite in the electrolyte regionandzerointhe semiconductor.This Consideration impacts principally the temporal evolution of the concentration in each region. In order to consider the distinct compositions in electrolyte and semiconductors, different values of diffusion coefficients were introduced for each region. This extension has visible impacts in the time that the system needs to achieve the steady state. Moreover, the introduction of the chemical potential gradient as the driving force of diffusion leaded to significant variations in the results obtained with the model. Here,the so-called uphill diffusion reported in the literature was observed. With the numerical approach,it was possible to consider different types of pulsed gate voltages, which allowed to simulate the charge and discharge processes of OECTs. For all cases, oscillatory curves similar to experimental measurements were obtained. Therefore, the numerical approach allowed to go beyond the analytical description, and develop an extensive investigation of the impact that different considerations have in the results.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-19082022-111554/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-19082022-111554/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090868465893376