A proposed framework for minimum energy consumption in electric VTOL aircrafts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18161/tde-04022021-080802/ |
Resumo: | In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger\'s transport equivalent to a car, with mobility within large cities and between cities. Today\'s civil air transport remains costly and accounts for 2% of the man-made CO2 emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, All Electric Aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this dissertation addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization algorithm, while final programming can be adapted for take-off and flight level changes as well. A generic VTOL tiltrotor aircraft with full electric power plant model was used to fit the derived dynamic equations of motion. Although a tiltrotor design is used as a proof of concept, it is possible to adapt the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide time history response for aircraft\'s rotors RPM, thrust direction and elevators deflexion that, if followed, results in the minimum electric power consumption through that landing path. Methodology includes modeling an electric tiltrotor design, solving the aircraft dynamics through the trajectory using a trim routine, elaborating learning methods for classification to address safety, comfort and design constraints and creating a genetic algorithm for optimization. For the tested cases, performance improvement ranged from 10 to 20% compared with mean energy of possible solutions. Results are highly dependent on the constraints. |
id |
USP_6b21d48621a00c0ab3b73af218283877 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04022021-080802 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A proposed framework for minimum energy consumption in electric VTOL aircraftsUma proposta de projeto para minimização do consumo de energia em aeronaves VTOL elétricasAeronaves elétricasAir taxi travelAlgoritmo GenéticoAprendizado de máquinaBateriasBatteriesConsumo de energiaDesempenho de pousoElectric aircraftEmpuxo rotativoEnergy consumptioneVTOLeVTOLGenetic algorithmLanding performanceMachine learningMelhoria de desempenhoOptimizationOtimizaçãoPerformance improvementTáxi aéreoTiltrotorIn order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger\'s transport equivalent to a car, with mobility within large cities and between cities. Today\'s civil air transport remains costly and accounts for 2% of the man-made CO2 emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, All Electric Aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this dissertation addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization algorithm, while final programming can be adapted for take-off and flight level changes as well. A generic VTOL tiltrotor aircraft with full electric power plant model was used to fit the derived dynamic equations of motion. Although a tiltrotor design is used as a proof of concept, it is possible to adapt the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide time history response for aircraft\'s rotors RPM, thrust direction and elevators deflexion that, if followed, results in the minimum electric power consumption through that landing path. Methodology includes modeling an electric tiltrotor design, solving the aircraft dynamics through the trajectory using a trim routine, elaborating learning methods for classification to address safety, comfort and design constraints and creating a genetic algorithm for optimization. For the tested cases, performance improvement ranged from 10 to 20% compared with mean energy of possible solutions. Results are highly dependent on the constraints.A fim de melhorar o tempo de deslocamento para viagens de curta distância e aliviar o tráfego nas grandes cidades, uma nova categoria de transporte tem sido tema de pesquisas e de novos projetos. O mercado de transporte por táxi aéreo poderá mudar a forma como as pessoas vivem e se locomovem por meio do conceito de veículos com a habilidade de decolar e pousar verticalmente e que também promovem um transporte equivalente a um carro, com mobilidade dentro de grandes cidades e também entre cidades. O transporte aéreo civil de hoje permanece custoso e representa 2% das emissões de CO2 provocadas pelo homem. Aproveitando esse cenário, muitas empresas desenvolveram seu próprio projeto de decolagem e aterrissagem vertical (VTOL), buscando atender conforto, segurança, baixo custo e tempo de voo de maneira sustentável. Portanto, o uso de fontes de energia renováveis, especialmente baterias e sistemas de propulsão totalmente elétricos, são a escolha mais comum para essas aeronaves que surgem neste mercado. No entanto, ainda é um desafio encontrar uma maneira viável de utilizar baterias e não mais os tradicionais combustíveis à base de petróleo. As baterias são pesadas e têm uma densidade energética menor que a da gasolina, diesel ou querosene. Portanto, apesar de todas as vantagens claras, as aeronaves totalmente elétricas (AEA) ainda possuem baixa autonomia e alto custo operacional, uma vez que as baterias devem ser recarregadas ou substituídas. Nesse sentido, esta dissertação trás uma maneira de otimizar o consumo de energia em uma missão típica de uma aeronave de táxi aéreo. O procedimento de aproximação e aterrissagem é objeto de um algoritmo de otimização e o programa final pode ser adaptado às fases de mudanças de nível e de decolagem também. Uma aeronave VTOL de empuxo rotativo genérica com dados de propulsão totalmente elétrica foi usada como modelo de dinâmica de voo para derivar as equações do movimento. Embora um projeto de empuxo rotativo seja usado como prova de conceito, é possível adequar a otimização para outros tipos de projetos conceituais, mesmo para aqueles com motores independentes para as fases de voo pairado e de cruzeiro. Para uma determinada trajetória, o melhor conjunto de variáveis de controle são calculadas de forma a prover a resposta no tempo para o RPM dos rotores, ângulo de tração e deflexão de profundores da aeronave que, se seguidos, resultam na mínima energia elétrica consumida para essa trajetória. A metodologia inclui a modelagem de uma aeronave de empuxo rotativo elétrica, solução da dinâmica de voo para a trajetória usando uma rotina de compensação, elaboração de métodos de aprendizagem para classificação para endereçar restrições de segurança, conforto e projeto e criação de um algoritmo genético para otimização. Para os casos testados, a melhoria de desempenho variou de 10 a 20% comparada à energia média das possíveis soluções. Os resultados são altamente dependentes das restrições.Biblioteca Digitais de Teses e Dissertações da USPMuñoz, Hernan Dario CeronBrito, Willian Caruso de2020-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18161/tde-04022021-080802/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-15T21:50:02Zoai:teses.usp.br:tde-04022021-080802Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-15T21:50:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A proposed framework for minimum energy consumption in electric VTOL aircrafts Uma proposta de projeto para minimização do consumo de energia em aeronaves VTOL elétricas |
title |
A proposed framework for minimum energy consumption in electric VTOL aircrafts |
spellingShingle |
A proposed framework for minimum energy consumption in electric VTOL aircrafts Brito, Willian Caruso de Aeronaves elétricas Air taxi travel Algoritmo Genético Aprendizado de máquina Baterias Batteries Consumo de energia Desempenho de pouso Electric aircraft Empuxo rotativo Energy consumption eVTOL eVTOL Genetic algorithm Landing performance Machine learning Melhoria de desempenho Optimization Otimização Performance improvement Táxi aéreo Tiltrotor |
title_short |
A proposed framework for minimum energy consumption in electric VTOL aircrafts |
title_full |
A proposed framework for minimum energy consumption in electric VTOL aircrafts |
title_fullStr |
A proposed framework for minimum energy consumption in electric VTOL aircrafts |
title_full_unstemmed |
A proposed framework for minimum energy consumption in electric VTOL aircrafts |
title_sort |
A proposed framework for minimum energy consumption in electric VTOL aircrafts |
author |
Brito, Willian Caruso de |
author_facet |
Brito, Willian Caruso de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Muñoz, Hernan Dario Ceron |
dc.contributor.author.fl_str_mv |
Brito, Willian Caruso de |
dc.subject.por.fl_str_mv |
Aeronaves elétricas Air taxi travel Algoritmo Genético Aprendizado de máquina Baterias Batteries Consumo de energia Desempenho de pouso Electric aircraft Empuxo rotativo Energy consumption eVTOL eVTOL Genetic algorithm Landing performance Machine learning Melhoria de desempenho Optimization Otimização Performance improvement Táxi aéreo Tiltrotor |
topic |
Aeronaves elétricas Air taxi travel Algoritmo Genético Aprendizado de máquina Baterias Batteries Consumo de energia Desempenho de pouso Electric aircraft Empuxo rotativo Energy consumption eVTOL eVTOL Genetic algorithm Landing performance Machine learning Melhoria de desempenho Optimization Otimização Performance improvement Táxi aéreo Tiltrotor |
description |
In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger\'s transport equivalent to a car, with mobility within large cities and between cities. Today\'s civil air transport remains costly and accounts for 2% of the man-made CO2 emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, All Electric Aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this dissertation addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization algorithm, while final programming can be adapted for take-off and flight level changes as well. A generic VTOL tiltrotor aircraft with full electric power plant model was used to fit the derived dynamic equations of motion. Although a tiltrotor design is used as a proof of concept, it is possible to adapt the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide time history response for aircraft\'s rotors RPM, thrust direction and elevators deflexion that, if followed, results in the minimum electric power consumption through that landing path. Methodology includes modeling an electric tiltrotor design, solving the aircraft dynamics through the trajectory using a trim routine, elaborating learning methods for classification to address safety, comfort and design constraints and creating a genetic algorithm for optimization. For the tested cases, performance improvement ranged from 10 to 20% compared with mean energy of possible solutions. Results are highly dependent on the constraints. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18161/tde-04022021-080802/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18161/tde-04022021-080802/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256649527459840 |