Statistical inference in complex networks

Detalhes bibliográficos
Autor(a) principal: Oe, Bianca Madoka Shimizu
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28032017-095426/
Resumo: The complex network theory has been extensively used to understand various natural and artificial phenomena made of interconnected parts. This representation enables the study of dynamical processes running on complex systems, such as epidemics and rumor spreading. The evolution of these dynamical processes is influenced by the organization of the network. The size of some real world networks makes it prohibitive to analyse the whole network computationally. Thus it is necessary to represent it by a set of topological measures or to reduce its size by means of sampling. In addition, most networks are samples of a larger networks whose structure may not be captured and thus, need to be inferred from samples. In this work, we study both problems: the influence of the structure of the network in spreading processes and the effects of sampling in the structure of the network. Our results suggest that it is possible to predict the final fraction of infected individuals and the final fraction of individuals that came across a rumor by modeling them with a beta regression model and using topological measures as regressors. The most influential measure in both cases is the average search information, that quantifies the ease or difficulty to navigate through a network. We have also shown that the structure of a sampled network differs from the original network and that the type of change depends on the sampling method. Finally, we apply four sampling methods to study the behaviour of the epidemic threshold of a network when sampled with different sampling rates and found out that the breadth-first search sampling is most appropriate method to estimate the epidemic threshold among the studied ones.
id USP_6bb4fce81c06113a63600d4f58132c41
oai_identifier_str oai:teses.usp.br:tde-28032017-095426
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Statistical inference in complex networksInferência estatística em redes complexasAmostragemAnálise de regressãoComplex networksProcessos de propagaçãoRedes complexasRegression analysisSamplingSpreading processesThe complex network theory has been extensively used to understand various natural and artificial phenomena made of interconnected parts. This representation enables the study of dynamical processes running on complex systems, such as epidemics and rumor spreading. The evolution of these dynamical processes is influenced by the organization of the network. The size of some real world networks makes it prohibitive to analyse the whole network computationally. Thus it is necessary to represent it by a set of topological measures or to reduce its size by means of sampling. In addition, most networks are samples of a larger networks whose structure may not be captured and thus, need to be inferred from samples. In this work, we study both problems: the influence of the structure of the network in spreading processes and the effects of sampling in the structure of the network. Our results suggest that it is possible to predict the final fraction of infected individuals and the final fraction of individuals that came across a rumor by modeling them with a beta regression model and using topological measures as regressors. The most influential measure in both cases is the average search information, that quantifies the ease or difficulty to navigate through a network. We have also shown that the structure of a sampled network differs from the original network and that the type of change depends on the sampling method. Finally, we apply four sampling methods to study the behaviour of the epidemic threshold of a network when sampled with different sampling rates and found out that the breadth-first search sampling is most appropriate method to estimate the epidemic threshold among the studied ones.Vários fenômenos naturais e artificiais compostos de partes interconectadas vem sendo estudados pela teoria de redes complexas. Tal representação permite o estudo de processos dinâmicos que ocorrem em redes complexas, tais como propagação de epidemias e rumores. A evolução destes processos é influenciada pela organização das conexões da rede. O tamanho das redes do mundo real torna a análise da rede inteira computacionalmente proibitiva. Portanto, torna-se necessário representá-la com medidas topológicas ou amostrá-la para reduzir seu tamanho. Além disso, muitas redes são amostras de redes maiores cuja estrutura é difícil de ser capturada e deve ser inferida de amostras. Neste trabalho, ambos os problemas são estudados: a influência da estrutura da rede em processos de propagação e os efeitos da amostragem na estrutura da rede. Os resultados obtidos sugerem que é possível predizer o tamanho da epidemia ou do rumor com base em um modelo de regressão beta com dispersão variável, usando medidas topológicas como regressores. A medida mais influente em ambas as dinâmicas é a informação de busca média, que quantifica a facilidade com que se navega em uma rede. Também é mostrado que a estrutura de uma rede amostrada difere da original e que o tipo de mudança depende do método de amostragem utilizado. Por fim, quatro métodos de amostragem foram aplicados para estudar o comportamento do limiar epidêmico de uma rede quando amostrada com diferentes taxas de amostragem. Os resultados sugerem que a amostragem por busca em largura é a mais adequada para estimar o limiar epidêmico entre os métodos comparados.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, Francisco AparecidoOe, Bianca Madoka Shimizu2017-01-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-28032017-095426/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:34:08Zoai:teses.usp.br:tde-28032017-095426Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Statistical inference in complex networks
Inferência estatística em redes complexas
title Statistical inference in complex networks
spellingShingle Statistical inference in complex networks
Oe, Bianca Madoka Shimizu
Amostragem
Análise de regressão
Complex networks
Processos de propagação
Redes complexas
Regression analysis
Sampling
Spreading processes
title_short Statistical inference in complex networks
title_full Statistical inference in complex networks
title_fullStr Statistical inference in complex networks
title_full_unstemmed Statistical inference in complex networks
title_sort Statistical inference in complex networks
author Oe, Bianca Madoka Shimizu
author_facet Oe, Bianca Madoka Shimizu
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Francisco Aparecido
dc.contributor.author.fl_str_mv Oe, Bianca Madoka Shimizu
dc.subject.por.fl_str_mv Amostragem
Análise de regressão
Complex networks
Processos de propagação
Redes complexas
Regression analysis
Sampling
Spreading processes
topic Amostragem
Análise de regressão
Complex networks
Processos de propagação
Redes complexas
Regression analysis
Sampling
Spreading processes
description The complex network theory has been extensively used to understand various natural and artificial phenomena made of interconnected parts. This representation enables the study of dynamical processes running on complex systems, such as epidemics and rumor spreading. The evolution of these dynamical processes is influenced by the organization of the network. The size of some real world networks makes it prohibitive to analyse the whole network computationally. Thus it is necessary to represent it by a set of topological measures or to reduce its size by means of sampling. In addition, most networks are samples of a larger networks whose structure may not be captured and thus, need to be inferred from samples. In this work, we study both problems: the influence of the structure of the network in spreading processes and the effects of sampling in the structure of the network. Our results suggest that it is possible to predict the final fraction of infected individuals and the final fraction of individuals that came across a rumor by modeling them with a beta regression model and using topological measures as regressors. The most influential measure in both cases is the average search information, that quantifies the ease or difficulty to navigate through a network. We have also shown that the structure of a sampled network differs from the original network and that the type of change depends on the sampling method. Finally, we apply four sampling methods to study the behaviour of the epidemic threshold of a network when sampled with different sampling rates and found out that the breadth-first search sampling is most appropriate method to estimate the epidemic threshold among the studied ones.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28032017-095426/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28032017-095426/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257428375109632