AFORAPRO: reconhecimento de objetos invariante sob transformações afins.

Detalhes bibliográficos
Autor(a) principal: Pérez López, Guillermo Ángel
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-31052011-155411/
Resumo: Reconhecimento de objetos é uma aplicação básica da área de processamento de imagens e visão computacional. O procedimento comum do reconhecimento consiste em achar ocorrências de uma imagem modelo numa outra imagem a ser analisada. Consequentemente, se as imagens apresentarem mudanças no ponto de vista da câmera o algoritmo normalmente falha. A invariância a pontos de vista é uma qualidade que permite reconhecer um objeto, mesmo que este apresente distorções resultantes de uma transformação em perspectiva causada pela mudança do ponto de vista. Uma abordagem baseada na simulação de pontos de vista, chamada ASIFT, tem sido recentemente proposta no entorno desta problemática. O ASIFT é invariante a pontos de vista, no entanto falha na presença de padrões repetitivos e baixo contraste. O objetivo de nosso trabalho é utilizar uma variante da técnica de simulação de pontos de vista em combinação com a técnica de extração dos coeficientes de Fourier de projeções radiais e circulares (FORAPRO), para propor um algoritmo invariante a pontos de vista, e robusto a padrões repetitivos e baixo contraste. De maneira geral, a nossa proposta resume-se nas seguintes fases: (a) Distorcemos a imagem, variando os parâmetros de inclinação e rotação da câmera, para gerar alguns modelos e conseguir a invariância a deformações em perspectiva, (b) utilizamos cada como modelo a ser procurado na imagem, para escolher o que melhor case, (c) realizamos o casamento de padrões. As duas últimas fases do processo baseiam-se em características invariantes por rotação, escala, brilho e contraste extraídas pelos coeficientes de Fourier. Nossa proposta, que chamamos AFORAPRO, foi testada com 350 imagens que continham diversidade nos requerimentos, e demonstrou ser invariante a pontos de vista e ter ótimo desempenho na presença de padrões repetitivos e baixo contraste.
id USP_6c062385855dd8207803e1955c693c18
oai_identifier_str oai:teses.usp.br:tde-31052011-155411
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling AFORAPRO: reconhecimento de objetos invariante sob transformações afins.AFORAPRO: objects recognition under affine transformation invariant.Affine invariantASIFTASIFTCasamento de padrõesChanges contrastCoeficientes de FourierDistorção de imagensFORAPROFORAPROFourier coefficientsImages distortionInvariância afimMudança de contrasteObjects recognitionPadrões repetitivosReconhecimento de objetosRepetitive patternsSimulação de ponto de vistaTemplate-matchingViewpoint simulationReconhecimento de objetos é uma aplicação básica da área de processamento de imagens e visão computacional. O procedimento comum do reconhecimento consiste em achar ocorrências de uma imagem modelo numa outra imagem a ser analisada. Consequentemente, se as imagens apresentarem mudanças no ponto de vista da câmera o algoritmo normalmente falha. A invariância a pontos de vista é uma qualidade que permite reconhecer um objeto, mesmo que este apresente distorções resultantes de uma transformação em perspectiva causada pela mudança do ponto de vista. Uma abordagem baseada na simulação de pontos de vista, chamada ASIFT, tem sido recentemente proposta no entorno desta problemática. O ASIFT é invariante a pontos de vista, no entanto falha na presença de padrões repetitivos e baixo contraste. O objetivo de nosso trabalho é utilizar uma variante da técnica de simulação de pontos de vista em combinação com a técnica de extração dos coeficientes de Fourier de projeções radiais e circulares (FORAPRO), para propor um algoritmo invariante a pontos de vista, e robusto a padrões repetitivos e baixo contraste. De maneira geral, a nossa proposta resume-se nas seguintes fases: (a) Distorcemos a imagem, variando os parâmetros de inclinação e rotação da câmera, para gerar alguns modelos e conseguir a invariância a deformações em perspectiva, (b) utilizamos cada como modelo a ser procurado na imagem, para escolher o que melhor case, (c) realizamos o casamento de padrões. As duas últimas fases do processo baseiam-se em características invariantes por rotação, escala, brilho e contraste extraídas pelos coeficientes de Fourier. Nossa proposta, que chamamos AFORAPRO, foi testada com 350 imagens que continham diversidade nos requerimentos, e demonstrou ser invariante a pontos de vista e ter ótimo desempenho na presença de padrões repetitivos e baixo contraste.Object recognition is a basic application from the domain of image processing and computer vision. The common process recognition consists of finding occurrences of an image query in another image to be analyzed A. Consequently, if the images changes viewpoint in the camera it will normally result in the algorithm failure. The invariance viewpoints are qualities that permit recognition of an object, even if this present distortion resultant of a transformation of perspective is caused by the change in viewpoint. An approach based on viewpoint simulation, called ASIFT, has recently been proposed surrounding this issue. The ASIFT algorithm is invariant viewpoints; however there are flaws in the presence of repetitive patterns and low contrast. The objective of our work is to use a variant of this technique of viewpoint simulating, in combination with the technique of extraction of the Coefficients of Fourier Projections Radials and Circulars (FORAPRO), and to propose an algorithm of invariant viewpoints and robust repetitive patterns and low contrast. In general, our proposal summarizes the following stages: (a) We distort the image, varying the parameters of inclination and rotation of the camera, to produce some models and achieve perspective invariance deformation, (b) use as the model to be search in the image, to choose the that match best, (c) realize the template matching. The two last stages of process are based on invariant features by images rotation, scale, brightness and contrast extracted by Fourier coefficients. Our approach, that we call AFORAPRO, was tested with 350 images that contained diversity in applications, and demonstrated to have invariant viewpoints, and to have excellent performance in the presence of patterns repetitive and low contrast.Biblioteca Digitais de Teses e Dissertações da USPKim, Hae YongPérez López, Guillermo Ángel 2011-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-31052011-155411/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-31052011-155411Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
AFORAPRO: objects recognition under affine transformation invariant.
title AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
spellingShingle AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
Pérez López, Guillermo Ángel
Affine invariant
ASIFT
ASIFT
Casamento de padrões
Changes contrast
Coeficientes de Fourier
Distorção de imagens
FORAPRO
FORAPRO
Fourier coefficients
Images distortion
Invariância afim
Mudança de contraste
Objects recognition
Padrões repetitivos
Reconhecimento de objetos
Repetitive patterns
Simulação de ponto de vista
Template-matching
Viewpoint simulation
title_short AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
title_full AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
title_fullStr AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
title_full_unstemmed AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
title_sort AFORAPRO: reconhecimento de objetos invariante sob transformações afins.
author Pérez López, Guillermo Ángel
author_facet Pérez López, Guillermo Ángel
author_role author
dc.contributor.none.fl_str_mv Kim, Hae Yong
dc.contributor.author.fl_str_mv Pérez López, Guillermo Ángel
dc.subject.por.fl_str_mv Affine invariant
ASIFT
ASIFT
Casamento de padrões
Changes contrast
Coeficientes de Fourier
Distorção de imagens
FORAPRO
FORAPRO
Fourier coefficients
Images distortion
Invariância afim
Mudança de contraste
Objects recognition
Padrões repetitivos
Reconhecimento de objetos
Repetitive patterns
Simulação de ponto de vista
Template-matching
Viewpoint simulation
topic Affine invariant
ASIFT
ASIFT
Casamento de padrões
Changes contrast
Coeficientes de Fourier
Distorção de imagens
FORAPRO
FORAPRO
Fourier coefficients
Images distortion
Invariância afim
Mudança de contraste
Objects recognition
Padrões repetitivos
Reconhecimento de objetos
Repetitive patterns
Simulação de ponto de vista
Template-matching
Viewpoint simulation
description Reconhecimento de objetos é uma aplicação básica da área de processamento de imagens e visão computacional. O procedimento comum do reconhecimento consiste em achar ocorrências de uma imagem modelo numa outra imagem a ser analisada. Consequentemente, se as imagens apresentarem mudanças no ponto de vista da câmera o algoritmo normalmente falha. A invariância a pontos de vista é uma qualidade que permite reconhecer um objeto, mesmo que este apresente distorções resultantes de uma transformação em perspectiva causada pela mudança do ponto de vista. Uma abordagem baseada na simulação de pontos de vista, chamada ASIFT, tem sido recentemente proposta no entorno desta problemática. O ASIFT é invariante a pontos de vista, no entanto falha na presença de padrões repetitivos e baixo contraste. O objetivo de nosso trabalho é utilizar uma variante da técnica de simulação de pontos de vista em combinação com a técnica de extração dos coeficientes de Fourier de projeções radiais e circulares (FORAPRO), para propor um algoritmo invariante a pontos de vista, e robusto a padrões repetitivos e baixo contraste. De maneira geral, a nossa proposta resume-se nas seguintes fases: (a) Distorcemos a imagem, variando os parâmetros de inclinação e rotação da câmera, para gerar alguns modelos e conseguir a invariância a deformações em perspectiva, (b) utilizamos cada como modelo a ser procurado na imagem, para escolher o que melhor case, (c) realizamos o casamento de padrões. As duas últimas fases do processo baseiam-se em características invariantes por rotação, escala, brilho e contraste extraídas pelos coeficientes de Fourier. Nossa proposta, que chamamos AFORAPRO, foi testada com 350 imagens que continham diversidade nos requerimentos, e demonstrou ser invariante a pontos de vista e ter ótimo desempenho na presença de padrões repetitivos e baixo contraste.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-31052011-155411/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-31052011-155411/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257511564935168