Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03072014-101251/ |
Resumo: | Planejamento Probabilístico estuda os problemas de tomada de decisão sequencial de um agente, em que as ações possuem efeitos probabilísticos, modelados como um processo de decisão markoviano (Markov Decision Process - MDP). Dadas a função de transição de estados probabilística e os valores de recompensa das ações, é possível determinar uma política de ações (i.e., um mapeamento entre estado do ambiente e ações do agente) que maximiza a recompensa esperada acumulada (ou minimiza o custo esperado acumulado) pela execução de uma sequência de ações. Nos casos em que o modelo MDP não é completamente conhecido, a melhor política deve ser aprendida através da interação do agente com o ambiente real. Este processo é chamado de aprendizado por reforço. Porém, nas aplicações em que não é permitido realizar experiências no ambiente real, por exemplo, operações de venda, é possível realizar o aprendizado por reforço sobre uma amostra de experiências passadas, processo chamado de aprendizado por reforço em lote (Batch Reinforcement Learning). Neste trabalho, estudamos técnicas de aprendizado por reforço em lote usando um histórico de interações passadas, armazenadas em um banco de dados de processos, e propomos algumas formas de melhorar os algoritmos existentes. Como um estudo de caso, aplicamos esta técnica no aprendizado de políticas para o processo de venda de impressoras de grande formato, cujo objetivo é a construção de um sistema de recomendação de ações para vendedores iniciantes. |
id |
USP_6c430060852338a52822ce0ea642881d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03072014-101251 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de vendaBatch reinforcement learning: a case study for the problem of decision making in sales processesAprendizado de processos de vendaAprendizado por reforço em loteBatch reinforcement learningMarkov decision processPlanejamento probabilísticoProbabilistic planningProcesso de decisão markovianoSales process learningPlanejamento Probabilístico estuda os problemas de tomada de decisão sequencial de um agente, em que as ações possuem efeitos probabilísticos, modelados como um processo de decisão markoviano (Markov Decision Process - MDP). Dadas a função de transição de estados probabilística e os valores de recompensa das ações, é possível determinar uma política de ações (i.e., um mapeamento entre estado do ambiente e ações do agente) que maximiza a recompensa esperada acumulada (ou minimiza o custo esperado acumulado) pela execução de uma sequência de ações. Nos casos em que o modelo MDP não é completamente conhecido, a melhor política deve ser aprendida através da interação do agente com o ambiente real. Este processo é chamado de aprendizado por reforço. Porém, nas aplicações em que não é permitido realizar experiências no ambiente real, por exemplo, operações de venda, é possível realizar o aprendizado por reforço sobre uma amostra de experiências passadas, processo chamado de aprendizado por reforço em lote (Batch Reinforcement Learning). Neste trabalho, estudamos técnicas de aprendizado por reforço em lote usando um histórico de interações passadas, armazenadas em um banco de dados de processos, e propomos algumas formas de melhorar os algoritmos existentes. Como um estudo de caso, aplicamos esta técnica no aprendizado de políticas para o processo de venda de impressoras de grande formato, cujo objetivo é a construção de um sistema de recomendação de ações para vendedores iniciantes.Probabilistic planning studies the problems of sequential decision-making of an agent, in which actions have probabilistic effects, and can be modeled as a Markov decision process (MDP). Given the probabilities and reward values of each action, it is possible to determine an action policy (in other words, a mapping between the state of the environment and the agent\'s actions) that maximizes the expected reward accumulated by executing a sequence of actions. In cases where the MDP model is not completely known, the best policy needs to be learned through the interaction of the agent in the real environment. This process is called reinforcement learning. However, in applications where it is not allowed to perform experiments in the real environment, for example, sales process, it is possible to perform the reinforcement learning using a sample of past experiences. This process is called Batch Reinforcement Learning. In this work, we study techniques of batch reinforcement learning (BRL), in which learning is done using a history of past interactions, stored in a processes database. As a case study, we apply this technique for learning policies in the sales process for large format printers, whose goal is to build a action recommendation system for beginners sellers.Biblioteca Digitais de Teses e Dissertações da USPBarros, Leliane Nunes deLacerda, Dênis Antonio2013-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-03072014-101251/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-03072014-101251Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda Batch reinforcement learning: a case study for the problem of decision making in sales processes |
title |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda |
spellingShingle |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda Lacerda, Dênis Antonio Aprendizado de processos de venda Aprendizado por reforço em lote Batch reinforcement learning Markov decision process Planejamento probabilístico Probabilistic planning Processo de decisão markoviano Sales process learning |
title_short |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda |
title_full |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda |
title_fullStr |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda |
title_full_unstemmed |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda |
title_sort |
Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda |
author |
Lacerda, Dênis Antonio |
author_facet |
Lacerda, Dênis Antonio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barros, Leliane Nunes de |
dc.contributor.author.fl_str_mv |
Lacerda, Dênis Antonio |
dc.subject.por.fl_str_mv |
Aprendizado de processos de venda Aprendizado por reforço em lote Batch reinforcement learning Markov decision process Planejamento probabilístico Probabilistic planning Processo de decisão markoviano Sales process learning |
topic |
Aprendizado de processos de venda Aprendizado por reforço em lote Batch reinforcement learning Markov decision process Planejamento probabilístico Probabilistic planning Processo de decisão markoviano Sales process learning |
description |
Planejamento Probabilístico estuda os problemas de tomada de decisão sequencial de um agente, em que as ações possuem efeitos probabilísticos, modelados como um processo de decisão markoviano (Markov Decision Process - MDP). Dadas a função de transição de estados probabilística e os valores de recompensa das ações, é possível determinar uma política de ações (i.e., um mapeamento entre estado do ambiente e ações do agente) que maximiza a recompensa esperada acumulada (ou minimiza o custo esperado acumulado) pela execução de uma sequência de ações. Nos casos em que o modelo MDP não é completamente conhecido, a melhor política deve ser aprendida através da interação do agente com o ambiente real. Este processo é chamado de aprendizado por reforço. Porém, nas aplicações em que não é permitido realizar experiências no ambiente real, por exemplo, operações de venda, é possível realizar o aprendizado por reforço sobre uma amostra de experiências passadas, processo chamado de aprendizado por reforço em lote (Batch Reinforcement Learning). Neste trabalho, estudamos técnicas de aprendizado por reforço em lote usando um histórico de interações passadas, armazenadas em um banco de dados de processos, e propomos algumas formas de melhorar os algoritmos existentes. Como um estudo de caso, aplicamos esta técnica no aprendizado de políticas para o processo de venda de impressoras de grande formato, cujo objetivo é a construção de um sistema de recomendação de ações para vendedores iniciantes. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03072014-101251/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03072014-101251/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256640123830272 |