Bootstrap não-paramétrico aplicado a dados incompletos
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020959/ |
Resumo: | Um problema bastante comum em levantamentos amostrais é afalta de algumas das informações. Uma maneira de tratar esse problema é a imputação, consiste em prever as observações perdidas, completando o conjunto, de dados para depois analisá-lo como se fosse completo. Em particular, essa idéia também pode ser aplicada quando se pretende utilizar o método bootstrap para se estimar o erro padrão de algum estimador. Apesar dessa técnica ser bastante utilizada atualmente, pouca atenção tem sido dada á sua aplicação na ausência de informações. Este trabalho discorre sobre a aplicação da técnica bootstrap não-paramétrica a dados incompletos, caso em que o procedimento usual é aplicá-la em conjunto com algum método de imputação. Apresentamos os resultados de simulação sobre a estimação da variância dos estimadores das componentes da variância em um modelo linear misto e mediante a geração de dados através de uma distribuição normal bivariada. As amostras utilizadas são do tipo painel onde n indivíduos foram gerados em dois instantes de tempo |
id |
USP_6c6b876ae5623f6d5c81c6f2ed38673a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-020959 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bootstrap não-paramétrico aplicado a dados incompletosnot availableInferência EstatísticaUm problema bastante comum em levantamentos amostrais é afalta de algumas das informações. Uma maneira de tratar esse problema é a imputação, consiste em prever as observações perdidas, completando o conjunto, de dados para depois analisá-lo como se fosse completo. Em particular, essa idéia também pode ser aplicada quando se pretende utilizar o método bootstrap para se estimar o erro padrão de algum estimador. Apesar dessa técnica ser bastante utilizada atualmente, pouca atenção tem sido dada á sua aplicação na ausência de informações. Este trabalho discorre sobre a aplicação da técnica bootstrap não-paramétrica a dados incompletos, caso em que o procedimento usual é aplicá-la em conjunto com algum método de imputação. Apresentamos os resultados de simulação sobre a estimação da variância dos estimadores das componentes da variância em um modelo linear misto e mediante a geração de dados através de uma distribuição normal bivariada. As amostras utilizadas são do tipo painel onde n indivíduos foram gerados em dois instantes de temponot availableBiblioteca Digitais de Teses e Dissertações da USPBarroso, Lúcia PereiraSalinas, Delhi Teresa Paiva1998-07-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020959/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T11:41:02Zoai:teses.usp.br:tde-20210729-020959Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T11:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bootstrap não-paramétrico aplicado a dados incompletos not available |
title |
Bootstrap não-paramétrico aplicado a dados incompletos |
spellingShingle |
Bootstrap não-paramétrico aplicado a dados incompletos Salinas, Delhi Teresa Paiva Inferência Estatística |
title_short |
Bootstrap não-paramétrico aplicado a dados incompletos |
title_full |
Bootstrap não-paramétrico aplicado a dados incompletos |
title_fullStr |
Bootstrap não-paramétrico aplicado a dados incompletos |
title_full_unstemmed |
Bootstrap não-paramétrico aplicado a dados incompletos |
title_sort |
Bootstrap não-paramétrico aplicado a dados incompletos |
author |
Salinas, Delhi Teresa Paiva |
author_facet |
Salinas, Delhi Teresa Paiva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barroso, Lúcia Pereira |
dc.contributor.author.fl_str_mv |
Salinas, Delhi Teresa Paiva |
dc.subject.por.fl_str_mv |
Inferência Estatística |
topic |
Inferência Estatística |
description |
Um problema bastante comum em levantamentos amostrais é afalta de algumas das informações. Uma maneira de tratar esse problema é a imputação, consiste em prever as observações perdidas, completando o conjunto, de dados para depois analisá-lo como se fosse completo. Em particular, essa idéia também pode ser aplicada quando se pretende utilizar o método bootstrap para se estimar o erro padrão de algum estimador. Apesar dessa técnica ser bastante utilizada atualmente, pouca atenção tem sido dada á sua aplicação na ausência de informações. Este trabalho discorre sobre a aplicação da técnica bootstrap não-paramétrica a dados incompletos, caso em que o procedimento usual é aplicá-la em conjunto com algum método de imputação. Apresentamos os resultados de simulação sobre a estimação da variância dos estimadores das componentes da variância em um modelo linear misto e mediante a geração de dados através de uma distribuição normal bivariada. As amostras utilizadas são do tipo painel onde n indivíduos foram gerados em dois instantes de tempo |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-07-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020959/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020959/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257207697047552 |