Multiscale interactions, Low Frequency Variability and the Global Warming.

Detalhes bibliográficos
Autor(a) principal: Morais, Julio Cesar
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/14/14133/tde-18112020-042659/
Resumo: The potential of the Madden-Julian Oscillation (MJO) to influence the climate and weather in both tropical and extratropical regions is of utmost importance for the global warming and climate change discussion. In this context, understanding how the MJO responds to the warming of the planet is a necessary step to build our physical comprehension on the way in which global warming influences extreme events of precipitation and temperature fields. Here we address the issue of the MJO response to global warming by means of a toy model of the MJO activity based on a single nonlinear triad interaction involving two convectively coupled equatorial wave modes, namely a Rossby and a Kelvin wave, and a barotropic Rossby mode. The two equatorial modes are known to play an important role in the planetary-scale circulation features associated with the MJO within the tropics, while the barotropic Rossby mode is related to its tropical-extratropical teleconnection. In addition, since moisture convergence is also known to play an important role in the MJO dynamics, here we mimic this effect by representing the coupling between the equatorial waves and moist convection in terms of the wave-CISK formulation. We also analyze in this formulation the role of the diurnal cycle of the moisture field, which can resonantly couple the equatorial Rossby mode of the triad with a high-frequency inertio-gravity wave. The inertio-gravity mode is thought of as representing the high-frequency convective systems embedded in the MJO. The effect of global warming is analyzed by changing the maximum value of the moisture field. The results show that an enhanced moisture can allow the equatorial wave modes to get in resonance with the barotropic Rossby mode, making the wave triad to undergo stronger energy modulations. This stronger energy modulation of the triad interaction might suggest a stronger MJO activity under a moister (warmer) environment. Also, our results indicate that an increased moisture content renders possible the MJO low frequency envelope to excite a high frequency gravity mode. We further show by changing the amplitude of gravity mode that the energy modulation of the triad becomes more intense, with an enhanced back and forth energy transfer between the equatorial gravity and Rossby modes, affecting also the kelvin wave. This indicates a strong necessity of a better representation of gravity waves in GCMs in order to properly simulate the effect of global warming on the MJO.
id USP_6cbb2b40b1bd1309624e9ce5ad7878f1
oai_identifier_str oai:teses.usp.br:tde-18112020-042659
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Multiscale interactions, Low Frequency Variability and the Global Warming.Interações Multi-Escala, Variabilidade de Baixa Freqüência e o Aquecimento Globalaquecimento globaleventos extremos.Interações não linearesMJO. Global Warming. Atmospheric waves. Nonlinear interaction. Extreme Events.OMJondas atmosféricasThe potential of the Madden-Julian Oscillation (MJO) to influence the climate and weather in both tropical and extratropical regions is of utmost importance for the global warming and climate change discussion. In this context, understanding how the MJO responds to the warming of the planet is a necessary step to build our physical comprehension on the way in which global warming influences extreme events of precipitation and temperature fields. Here we address the issue of the MJO response to global warming by means of a toy model of the MJO activity based on a single nonlinear triad interaction involving two convectively coupled equatorial wave modes, namely a Rossby and a Kelvin wave, and a barotropic Rossby mode. The two equatorial modes are known to play an important role in the planetary-scale circulation features associated with the MJO within the tropics, while the barotropic Rossby mode is related to its tropical-extratropical teleconnection. In addition, since moisture convergence is also known to play an important role in the MJO dynamics, here we mimic this effect by representing the coupling between the equatorial waves and moist convection in terms of the wave-CISK formulation. We also analyze in this formulation the role of the diurnal cycle of the moisture field, which can resonantly couple the equatorial Rossby mode of the triad with a high-frequency inertio-gravity wave. The inertio-gravity mode is thought of as representing the high-frequency convective systems embedded in the MJO. The effect of global warming is analyzed by changing the maximum value of the moisture field. The results show that an enhanced moisture can allow the equatorial wave modes to get in resonance with the barotropic Rossby mode, making the wave triad to undergo stronger energy modulations. This stronger energy modulation of the triad interaction might suggest a stronger MJO activity under a moister (warmer) environment. Also, our results indicate that an increased moisture content renders possible the MJO low frequency envelope to excite a high frequency gravity mode. We further show by changing the amplitude of gravity mode that the energy modulation of the triad becomes more intense, with an enhanced back and forth energy transfer between the equatorial gravity and Rossby modes, affecting also the kelvin wave. This indicates a strong necessity of a better representation of gravity waves in GCMs in order to properly simulate the effect of global warming on the MJO.A capacidade que a oscilação de Madden-Julian (OMJ) possui de influenciar o tempo e o clima tanto da região tropical quanto das latitudes médias é de fundamental importância para a discussão envolvendo o aquecimento global e as mudanças climáticas. Neste contexto, o entendimento da resposta da OMJ à forçante ligada ao aquecimento do planeta é um passo necessário na construção de uma compreensão física da maneira como o aquecimento global influencia os eventos extremos nos campos de precipitação e temperatura. Neste trabalho a questão da resposta da OMJ sob aquecimento global é tratada por meio de um modelo simplificado baseado na interação não linear envolvendo dois modos equatoriais, sendo elas, uma onda de Kelvin e uma onda de Rossby equatorial, e uma onde de Rossby barotrópica. As duas ondas equatoriais reconhecidamente desempenham um importante papel na circulação tropical associada à OMJ. O modo barotrópico é responsável pelos padrões de teleconexão trópico-extratrópico. Adicionalmente, considerando o importante papel desempenhado pela convergência de umidade na dinâmica da OMJ nós usamos a formulação Wave-CISK para representar o acoplamento dos modos equatoriais com a convecção úmida. Nesta mesma formulação também é analisado o papel do ciclo diurno do campo de umidade, o qual pode acoplar o modo Rossby equatorial de maneira ressonante com um modo rápido como a onda de gravidade inercial. Este modo é considerado como representação dos sistemas convectivos de alta frequência existentes no interior da OMJ. O efeito do aquecimento global é analisado através da alteração do máximo valor do campo climatológico da umidade de fundo. Os resultados mostram que o aumento da umidade permite que a condição de ressonância entre os modos equatoriais e o modo barotrópico seja satisfeita, fazendo com que aconteça uma forte modulação na troca de energia no tripleto. Este aumento na eficiência da troca de energia dentro do tripleto pode ser interpretado como aumento na atividade da OMJ em um planeta mais quente (úmido). Outro resultado indica a possibilidade de o pacote de baixa frequência da OMJ possa excitar um modo de maior frequência como o modo de gravidade inercial. Neste trabalho também é mostrado que com o aumento da amplitude da onda de gravidade inercial a energia do tripleto sofre forte modulação, sendo que a energia passa do tripleto para a onda de gravidade e de volta para o tripleto, afetando além da onda de Rossby equatorial também a onda de Kelvin. Este resultado sugere que para melhor simular a resposta da OMJ ao aquecimento global é necessário que as ondas de gravidade sejam melhor representadas nos modelos de circulação global.Biblioteca Digitais de Teses e Dissertações da USPRaupp, Carlos Frederico MendonçaMorais, Julio Cesar2020-07-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/14/14133/tde-18112020-042659/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-12-18T16:07:52Zoai:teses.usp.br:tde-18112020-042659Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-12-18T16:07:52Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Multiscale interactions, Low Frequency Variability and the Global Warming.
Interações Multi-Escala, Variabilidade de Baixa Freqüência e o Aquecimento Global
title Multiscale interactions, Low Frequency Variability and the Global Warming.
spellingShingle Multiscale interactions, Low Frequency Variability and the Global Warming.
Morais, Julio Cesar
aquecimento global
eventos extremos.
Interações não lineares
MJO. Global Warming. Atmospheric waves. Nonlinear interaction. Extreme Events.
OMJ
ondas atmosféricas
title_short Multiscale interactions, Low Frequency Variability and the Global Warming.
title_full Multiscale interactions, Low Frequency Variability and the Global Warming.
title_fullStr Multiscale interactions, Low Frequency Variability and the Global Warming.
title_full_unstemmed Multiscale interactions, Low Frequency Variability and the Global Warming.
title_sort Multiscale interactions, Low Frequency Variability and the Global Warming.
author Morais, Julio Cesar
author_facet Morais, Julio Cesar
author_role author
dc.contributor.none.fl_str_mv Raupp, Carlos Frederico Mendonça
dc.contributor.author.fl_str_mv Morais, Julio Cesar
dc.subject.por.fl_str_mv aquecimento global
eventos extremos.
Interações não lineares
MJO. Global Warming. Atmospheric waves. Nonlinear interaction. Extreme Events.
OMJ
ondas atmosféricas
topic aquecimento global
eventos extremos.
Interações não lineares
MJO. Global Warming. Atmospheric waves. Nonlinear interaction. Extreme Events.
OMJ
ondas atmosféricas
description The potential of the Madden-Julian Oscillation (MJO) to influence the climate and weather in both tropical and extratropical regions is of utmost importance for the global warming and climate change discussion. In this context, understanding how the MJO responds to the warming of the planet is a necessary step to build our physical comprehension on the way in which global warming influences extreme events of precipitation and temperature fields. Here we address the issue of the MJO response to global warming by means of a toy model of the MJO activity based on a single nonlinear triad interaction involving two convectively coupled equatorial wave modes, namely a Rossby and a Kelvin wave, and a barotropic Rossby mode. The two equatorial modes are known to play an important role in the planetary-scale circulation features associated with the MJO within the tropics, while the barotropic Rossby mode is related to its tropical-extratropical teleconnection. In addition, since moisture convergence is also known to play an important role in the MJO dynamics, here we mimic this effect by representing the coupling between the equatorial waves and moist convection in terms of the wave-CISK formulation. We also analyze in this formulation the role of the diurnal cycle of the moisture field, which can resonantly couple the equatorial Rossby mode of the triad with a high-frequency inertio-gravity wave. The inertio-gravity mode is thought of as representing the high-frequency convective systems embedded in the MJO. The effect of global warming is analyzed by changing the maximum value of the moisture field. The results show that an enhanced moisture can allow the equatorial wave modes to get in resonance with the barotropic Rossby mode, making the wave triad to undergo stronger energy modulations. This stronger energy modulation of the triad interaction might suggest a stronger MJO activity under a moister (warmer) environment. Also, our results indicate that an increased moisture content renders possible the MJO low frequency envelope to excite a high frequency gravity mode. We further show by changing the amplitude of gravity mode that the energy modulation of the triad becomes more intense, with an enhanced back and forth energy transfer between the equatorial gravity and Rossby modes, affecting also the kelvin wave. This indicates a strong necessity of a better representation of gravity waves in GCMs in order to properly simulate the effect of global warming on the MJO.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/14/14133/tde-18112020-042659/
url https://www.teses.usp.br/teses/disponiveis/14/14133/tde-18112020-042659/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257118104616960