Linear and non-linear transport properties of quantum-dot devices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76131/tde-04102021-095224/ |
Resumo: | This thesis investigates (i) the correlation effects in the emergence of bound states in the continuum (BIC); and (ii) non-equilibrium effects of the asymmetric two-channel Kondo problem. BICs are discrete states embedded in the continuum. They have localized wave-function and are originated by the quantum interference effects. In the first project of this thesis, we investigate the correlation effects in the emergence of a BIC in a two identical quantum dot device coupled to a quantum wire. This device was modeled by the two-impurity Anderson Hamiltonian and diagonalized via the Numerical Renormalization Group method. Given the symmetry between the quantum dots, the system was projected on the bonding and antibonding orbital representation resulting from the symmetric and antisymmetric combinations of the quantum dots, respectively. In the non-interacting regime, the antibonding orbital is a Friedrich-Wintgen BIC. As the Coulomb interaction grows, the antibonding orbital is indirectly coupled to the continuum via spin-spin and isospin-isospin interactions with the bonding orbital. In addition, at zero-temperature, the Coulomb interaction triggers a quantum phase transition between a magnetic and a non-magnetic phase. The magnetic phase is associated to the emergence of a bound spin state in the continuum (spin-BIC). The phase transition results from competition between a singlet isospin state, formed by the isospin-isospin interaction, and a triplet spin state, formed by the spin-spin interaction, between the two orbitals. The two phases are due to the conservation of the spin of the antibonding orbital. At low temperature, the spin-BIC interacts ferromagnetically with the conduction band, and the interaction renormalizes to zero as T → 0. In the second project of this thesis, motivated by a recent experiment [Z. Iftikhar et al., Nature 526, 233 (2015)], we investigate the transport properties of a macroscopic metallic island coupled to two leads. In the low-energy regime, only two charging states of the island are energetically accessible, which mimic a pseudospin-1/2. The charge fluctuations on the island emulate a spin-flip mechanism. Therefore, the low- energy physics of this device is well described by the anisotropic two-channel Kondo model. To explore the non-linear electronic transport, the system is driven out of equilibrium by the sudden application of a bias voltage between the leads. Time-dependent Density Matrix Renormalization Group computations follow the time evolution of the electrical current for times longer than the transient regime, although not long enough to reach the steady state. In the symmetric-coupling regime, the time-dependent current and differential conductance measurements show the universal behavior of the two-channel Kondo effect. In this limit, the differential conductance scales with the square root of the Kondo temperature and vary with the square of the bias voltage. In the presence of asymmetry, the transient behavior can be explained via energy-time uncertainty principle. As a function of the bias voltage, the conductance displays the expected crossover from non-Fermi liquid to Fermi-liquid behavior. |
id |
USP_6d39d0cc6e79c2ad05b78862e2b1463a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04102021-095224 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Linear and non-linear transport properties of quantum-dot devicesPropriedades de transporte linear e não linear em dispositivos de ponto quânticoBound state in the continuumDensity matrix renormalization groupEfeito KondoEfeito Kondo de dois canaisEstado ligado no contínuoGrupo de renormalização da matrix da densidadeGrupo de renormalização numéricoKondo effectNumerical renormalization groupTwo channel Kondo effectThis thesis investigates (i) the correlation effects in the emergence of bound states in the continuum (BIC); and (ii) non-equilibrium effects of the asymmetric two-channel Kondo problem. BICs are discrete states embedded in the continuum. They have localized wave-function and are originated by the quantum interference effects. In the first project of this thesis, we investigate the correlation effects in the emergence of a BIC in a two identical quantum dot device coupled to a quantum wire. This device was modeled by the two-impurity Anderson Hamiltonian and diagonalized via the Numerical Renormalization Group method. Given the symmetry between the quantum dots, the system was projected on the bonding and antibonding orbital representation resulting from the symmetric and antisymmetric combinations of the quantum dots, respectively. In the non-interacting regime, the antibonding orbital is a Friedrich-Wintgen BIC. As the Coulomb interaction grows, the antibonding orbital is indirectly coupled to the continuum via spin-spin and isospin-isospin interactions with the bonding orbital. In addition, at zero-temperature, the Coulomb interaction triggers a quantum phase transition between a magnetic and a non-magnetic phase. The magnetic phase is associated to the emergence of a bound spin state in the continuum (spin-BIC). The phase transition results from competition between a singlet isospin state, formed by the isospin-isospin interaction, and a triplet spin state, formed by the spin-spin interaction, between the two orbitals. The two phases are due to the conservation of the spin of the antibonding orbital. At low temperature, the spin-BIC interacts ferromagnetically with the conduction band, and the interaction renormalizes to zero as T → 0. In the second project of this thesis, motivated by a recent experiment [Z. Iftikhar et al., Nature 526, 233 (2015)], we investigate the transport properties of a macroscopic metallic island coupled to two leads. In the low-energy regime, only two charging states of the island are energetically accessible, which mimic a pseudospin-1/2. The charge fluctuations on the island emulate a spin-flip mechanism. Therefore, the low- energy physics of this device is well described by the anisotropic two-channel Kondo model. To explore the non-linear electronic transport, the system is driven out of equilibrium by the sudden application of a bias voltage between the leads. Time-dependent Density Matrix Renormalization Group computations follow the time evolution of the electrical current for times longer than the transient regime, although not long enough to reach the steady state. In the symmetric-coupling regime, the time-dependent current and differential conductance measurements show the universal behavior of the two-channel Kondo effect. In this limit, the differential conductance scales with the square root of the Kondo temperature and vary with the square of the bias voltage. In the presence of asymmetry, the transient behavior can be explained via energy-time uncertainty principle. As a function of the bias voltage, the conductance displays the expected crossover from non-Fermi liquid to Fermi-liquid behavior.Esta tese investiga (i) os efeitos de forte correlação eletrônica na emergência de estados ligado no contínuo (BICs - bound states in the continuum); e (ii) os efeitos de não- equilíbrio no problema Kondo anisotrópico de dois canais. BICs são estados discretos embebidos no contínuo. Eles possuem função de onda localizada e são originados por efeito de interferência quântica. No primeiro projeto desta tese, investigamos os efeitos de correlação eletrônica na emergência de um BIC em um dispositivo de dois pontos quânticos idênticos acoplados a um fio quântico. Esse dispositivo foi modelado pelo Hamiltoniano de Anderson de duas impurezas e diagonalizado pelo grupo de Renormalização Numérico. Dada a simetria entre os pontos quânticos, o sistema foi projetado na representação de orbitais ligante e antiligante obtida pela combinação simétrica e antissimétrica dos pontos quânticos, respectivamente. No regime não interagente, o orbital antiligante é um BIC de Friedrich-Wintgen. Conforme a interação de Coulomb cresce, o orbital antiligante se acopla indiretamente com o contínuo, via interação de spin-spin e isospin-isospin, com o orbital ligante. Além disso, à temperatura zero, o aumento da interação de Coulomb desencadeia uma transição de fase quântica entre uma fase magnética e outra não magnética, sendo o magnetismo resultado da emergência de um estado ligado no contínuo de um único spin (spin-BIC). A transição de fase se deve a competição entre um estado singleto de isospin, formado pela interação isospin-isospin, e um estado tripleto de spin, formado pela interação spin-spin, entre os orbitais. As duas fases refletem a conservação do spin do orbital antiligante. No limite de baixas temperaturas, o spin-BIC interage ferromagneticamente com a banda de condução, mas a interação é renormalizada para zero para T → 0. No segundo projeto, motivado por um experimento recente [Z. Iftikhar et al., Nature 526, 233 (2015)], estudamos o transporte eletrônico em uma ilha metálica macroscópica acoplada a dois terminais. No regime de baixas temperaturas, dois estados de carga da ilha são energeticamente acessíveis, que emulam um pseudo spin-1/2. A flutuação de carga induzida pela transferência de elétrons entre os terminais e a ilha simula um mecanismo de spin-flip. A física de baixas energias desse dispositivo é bem descrita pelo modelo Kondo anisotrópico de dois canais. Para explorar o transporte eletrônico não-linear, o sistema é tirado do equilíbrio pela aplicação repentina de uma diferença de potencial entre os terminais. Cálculos de Grupo de Renormalização da Matriz da Densidade permitem atingir tempos longos o suficiente para descrever o regime de transiente, mas não longo o suficiente para atingir o estado estacionário. Medidas de corrente e condutância diferencial dependente do tempo revelaram um comportamento universal do efeito Kondo de dois canais. A condutância diferencial escala com a raiz quadrada da temperatura Kondo e varia com o quadrado da diferença de potencial aplicada. Na presença de assimetria de carga, o regime transiente pode ser explicado pela relação de incerteza energia-tempo. A condutância diferencial em função da diferença de potencial mostra um crossover de uma fase de não-líquido de Fermi para uma de líquido de Fermi.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Luiz Nunes deSeridonio, Antonio Carlos FerreiraGuessi, Luiz Henrique Bugatti2021-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76131/tde-04102021-095224/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-10-05T14:39:02Zoai:teses.usp.br:tde-04102021-095224Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-10-05T14:39:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Linear and non-linear transport properties of quantum-dot devices Propriedades de transporte linear e não linear em dispositivos de ponto quântico |
title |
Linear and non-linear transport properties of quantum-dot devices |
spellingShingle |
Linear and non-linear transport properties of quantum-dot devices Guessi, Luiz Henrique Bugatti Bound state in the continuum Density matrix renormalization group Efeito Kondo Efeito Kondo de dois canais Estado ligado no contínuo Grupo de renormalização da matrix da densidade Grupo de renormalização numérico Kondo effect Numerical renormalization group Two channel Kondo effect |
title_short |
Linear and non-linear transport properties of quantum-dot devices |
title_full |
Linear and non-linear transport properties of quantum-dot devices |
title_fullStr |
Linear and non-linear transport properties of quantum-dot devices |
title_full_unstemmed |
Linear and non-linear transport properties of quantum-dot devices |
title_sort |
Linear and non-linear transport properties of quantum-dot devices |
author |
Guessi, Luiz Henrique Bugatti |
author_facet |
Guessi, Luiz Henrique Bugatti |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira, Luiz Nunes de Seridonio, Antonio Carlos Ferreira |
dc.contributor.author.fl_str_mv |
Guessi, Luiz Henrique Bugatti |
dc.subject.por.fl_str_mv |
Bound state in the continuum Density matrix renormalization group Efeito Kondo Efeito Kondo de dois canais Estado ligado no contínuo Grupo de renormalização da matrix da densidade Grupo de renormalização numérico Kondo effect Numerical renormalization group Two channel Kondo effect |
topic |
Bound state in the continuum Density matrix renormalization group Efeito Kondo Efeito Kondo de dois canais Estado ligado no contínuo Grupo de renormalização da matrix da densidade Grupo de renormalização numérico Kondo effect Numerical renormalization group Two channel Kondo effect |
description |
This thesis investigates (i) the correlation effects in the emergence of bound states in the continuum (BIC); and (ii) non-equilibrium effects of the asymmetric two-channel Kondo problem. BICs are discrete states embedded in the continuum. They have localized wave-function and are originated by the quantum interference effects. In the first project of this thesis, we investigate the correlation effects in the emergence of a BIC in a two identical quantum dot device coupled to a quantum wire. This device was modeled by the two-impurity Anderson Hamiltonian and diagonalized via the Numerical Renormalization Group method. Given the symmetry between the quantum dots, the system was projected on the bonding and antibonding orbital representation resulting from the symmetric and antisymmetric combinations of the quantum dots, respectively. In the non-interacting regime, the antibonding orbital is a Friedrich-Wintgen BIC. As the Coulomb interaction grows, the antibonding orbital is indirectly coupled to the continuum via spin-spin and isospin-isospin interactions with the bonding orbital. In addition, at zero-temperature, the Coulomb interaction triggers a quantum phase transition between a magnetic and a non-magnetic phase. The magnetic phase is associated to the emergence of a bound spin state in the continuum (spin-BIC). The phase transition results from competition between a singlet isospin state, formed by the isospin-isospin interaction, and a triplet spin state, formed by the spin-spin interaction, between the two orbitals. The two phases are due to the conservation of the spin of the antibonding orbital. At low temperature, the spin-BIC interacts ferromagnetically with the conduction band, and the interaction renormalizes to zero as T → 0. In the second project of this thesis, motivated by a recent experiment [Z. Iftikhar et al., Nature 526, 233 (2015)], we investigate the transport properties of a macroscopic metallic island coupled to two leads. In the low-energy regime, only two charging states of the island are energetically accessible, which mimic a pseudospin-1/2. The charge fluctuations on the island emulate a spin-flip mechanism. Therefore, the low- energy physics of this device is well described by the anisotropic two-channel Kondo model. To explore the non-linear electronic transport, the system is driven out of equilibrium by the sudden application of a bias voltage between the leads. Time-dependent Density Matrix Renormalization Group computations follow the time evolution of the electrical current for times longer than the transient regime, although not long enough to reach the steady state. In the symmetric-coupling regime, the time-dependent current and differential conductance measurements show the universal behavior of the two-channel Kondo effect. In this limit, the differential conductance scales with the square root of the Kondo temperature and vary with the square of the bias voltage. In the presence of asymmetry, the transient behavior can be explained via energy-time uncertainty principle. As a function of the bias voltage, the conductance displays the expected crossover from non-Fermi liquid to Fermi-liquid behavior. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76131/tde-04102021-095224/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76131/tde-04102021-095224/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256673690845184 |