Multivariate conditional density estimation with copulas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-160537/ |
Resumo: | Most machine learning regression models only yield single point estimations for the label of a new observation. However, when dealing with multi-modal or asymmetric distributions, a single point estimate is not enough to summarize the full uncertainty over such label. One solution for this case is to estimate the full conditional density function of the label given the features, which is more informative. For instance, this density can be used to compute probability regions rather than single point estimates. Conditional densities become especially useful when modelling multivariate responses, which is often the case in fields such as cosmology. Most well known conditional density estimators are too slow to be computed or do not generalize to multivariate-response settings. To minimize such problems, our method estimates multivariate densities using copula to aggregate estimates of univariate conditional densities given by the recent-developed FlexCode. We show that this solution leads to improved results when compared to other state-of-the-art techniques. |
id |
USP_6d4e185d6c8758ec984880acff36006c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27012022-160537 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Multivariate conditional density estimation with copulasEstimação de densidade multivariada com cópulasConditional density estimationCopulaCópulaEstimação de densidade condicionalFlexCodeFlexCodeMost machine learning regression models only yield single point estimations for the label of a new observation. However, when dealing with multi-modal or asymmetric distributions, a single point estimate is not enough to summarize the full uncertainty over such label. One solution for this case is to estimate the full conditional density function of the label given the features, which is more informative. For instance, this density can be used to compute probability regions rather than single point estimates. Conditional densities become especially useful when modelling multivariate responses, which is often the case in fields such as cosmology. Most well known conditional density estimators are too slow to be computed or do not generalize to multivariate-response settings. To minimize such problems, our method estimates multivariate densities using copula to aggregate estimates of univariate conditional densities given by the recent-developed FlexCode. We show that this solution leads to improved results when compared to other state-of-the-art techniques.A maioria dos modelos de regressão de aprendizado de máquina produz apenas estimativas pontuais para a resposta de uma nova observação. No entanto, ao lidar com distribuições multimodais ou assimétricas, a estimativa pontual não é suficiente para resumir toda a incerteza sobre a resposta. Uma solução para este caso é estimar toda a função de densidade condicional da resposta, condicional às características, o que é mais informativo. Por exemplo, essa densidade pode ser usada para calcular regiões de probabilidade em vez de estimativas pontuais. As densidades condicionais tornam-se especialmente úteis ao modelar respostas multivariadas, o que geralmente ocorre em campos como a cosmologia. A maioria dos estimadores de densidade condicional conhecidos são lentos computacionalmente ou não generalizam respostas multivariada. Para minimizar esses problemas, nosso método estima densidades multivariadas usando cópula para agregar estimativas de densidades condicionais univariadas fornecidas pelo FlexCode, que foi desenvolvido recentemente. Mostramos que esta solução leva a melhores resultados quando comparada com outras técnicas do estado da arte.Biblioteca Digitais de Teses e Dissertações da USPIzbicki, RafaelBisca, Felipe Hernandez2021-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-160537/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-01-27T18:59:02Zoai:teses.usp.br:tde-27012022-160537Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-01-27T18:59:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Multivariate conditional density estimation with copulas Estimação de densidade multivariada com cópulas |
title |
Multivariate conditional density estimation with copulas |
spellingShingle |
Multivariate conditional density estimation with copulas Bisca, Felipe Hernandez Conditional density estimation Copula Cópula Estimação de densidade condicional FlexCode FlexCode |
title_short |
Multivariate conditional density estimation with copulas |
title_full |
Multivariate conditional density estimation with copulas |
title_fullStr |
Multivariate conditional density estimation with copulas |
title_full_unstemmed |
Multivariate conditional density estimation with copulas |
title_sort |
Multivariate conditional density estimation with copulas |
author |
Bisca, Felipe Hernandez |
author_facet |
Bisca, Felipe Hernandez |
author_role |
author |
dc.contributor.none.fl_str_mv |
Izbicki, Rafael |
dc.contributor.author.fl_str_mv |
Bisca, Felipe Hernandez |
dc.subject.por.fl_str_mv |
Conditional density estimation Copula Cópula Estimação de densidade condicional FlexCode FlexCode |
topic |
Conditional density estimation Copula Cópula Estimação de densidade condicional FlexCode FlexCode |
description |
Most machine learning regression models only yield single point estimations for the label of a new observation. However, when dealing with multi-modal or asymmetric distributions, a single point estimate is not enough to summarize the full uncertainty over such label. One solution for this case is to estimate the full conditional density function of the label given the features, which is more informative. For instance, this density can be used to compute probability regions rather than single point estimates. Conditional densities become especially useful when modelling multivariate responses, which is often the case in fields such as cosmology. Most well known conditional density estimators are too slow to be computed or do not generalize to multivariate-response settings. To minimize such problems, our method estimates multivariate densities using copula to aggregate estimates of univariate conditional densities given by the recent-developed FlexCode. We show that this solution leads to improved results when compared to other state-of-the-art techniques. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-160537/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-160537/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257390673559552 |