Convolutional neural network for distortion Classification in face images.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-25102021-151818/ |
Resumo: | Face processing algorithms are becoming more popular in recent days due to the great domain of application in which they can be used. As a consequence, research about the quality of face images is also increasing. The current approach to Face Image Quality Assessment (FIQA) is focused on improving the performance of face recognition systems, as a result, current FIQA algorithms don\'t provide an indication of quality, but a performance estimation for face recognition algorithms. This approach makes the FIQA algorithms potentially unsuited for other scenarios regarding face images, and susceptible to inherit the limitations of face recognition. The present work tackles the main limitations of the current FIQA algorithms by proposing a new approach based on the distortions affecting the images. We developed two models based on Convolutional Neural Networks (CNN), to classify facial images according to the type and the degree of the distortion present in them. The models\' output provides qualitative information about the quality of facial images, useful for face recognition systems, as well as other face processing algorithms. Additionally, the proposed method can be a starting point to image enhancement processes like denoising, and deblurring. Two other contributions can be outlined from this work: a comprehensive study about the impact of blur, noise, brightness, contrast, and JPEG compression in face processing algorithms; and a new dataset for image quality assessment and distortion classification in face images. |
id |
USP_6d5bf1d599b92a4ea648a83d3dc6ff22 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25102021-151818 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Convolutional neural network for distortion Classification in face images.Rede neural convolucional para classificação de distorções em imagens de rostos.AlgorítmosClassificação de distorçãoCNNCNNDistortion classificationFIQAFIQA.Image qualityImagem (Qualidade)Face processing algorithms are becoming more popular in recent days due to the great domain of application in which they can be used. As a consequence, research about the quality of face images is also increasing. The current approach to Face Image Quality Assessment (FIQA) is focused on improving the performance of face recognition systems, as a result, current FIQA algorithms don\'t provide an indication of quality, but a performance estimation for face recognition algorithms. This approach makes the FIQA algorithms potentially unsuited for other scenarios regarding face images, and susceptible to inherit the limitations of face recognition. The present work tackles the main limitations of the current FIQA algorithms by proposing a new approach based on the distortions affecting the images. We developed two models based on Convolutional Neural Networks (CNN), to classify facial images according to the type and the degree of the distortion present in them. The models\' output provides qualitative information about the quality of facial images, useful for face recognition systems, as well as other face processing algorithms. Additionally, the proposed method can be a starting point to image enhancement processes like denoising, and deblurring. Two other contributions can be outlined from this work: a comprehensive study about the impact of blur, noise, brightness, contrast, and JPEG compression in face processing algorithms; and a new dataset for image quality assessment and distortion classification in face images.Os algoritmos de processamento facial estão se tornando mais populares nos últimos dias devido ao grande domínio de aplicação em que podem ser usados. Como consequência, as pesquisas sobre a qualidade das imagens faciais também estão aumentando. A abordagem atual para Avaliação da Qualidade da Imagem Facial (FIQA) é focada em melhorar o desempenho dos sistemas de reconhecimento facial, como resultado, os algoritmos FIQA atuais não fornecem uma indicação de qualidade e sim uma estimativa de desempenho para algoritmos de reconhecimento facial. Essa abordagem torna os algoritmos FIQA potencialmente inadequados para outros cenários relacionados a imagens faciais e suscetíveis a herdar as limitações do reconhecimento facial. O presente trabalho aborda as principais limitações dos algoritmos FIQA atuais ao propor uma nova abordagem baseada nas distorções que afetam as imagens. Desenvolvemos dois modelos baseados em Redes Neurais Convolucionais (CNN), para classificar as imagens faciais de acordo com o tipo e o grau de distorção nelas presente. A saída dos modelos fornece informação qualitativa sobre a qualidade das imagens faciais, útil para sistemas de reconhecimento facial, bem como outros algoritmos de processamento facial. Além disso, o método proposto pode ser um ponto de partida para processos de aprimoramento de imagem, como remoção de ruído e desfoque. Duas outras contribuições podem ser delineadas a partir deste trabalho: um estudo detalhado sobre o impacto de desfoque, ruído, brilho, contraste e compressão JPEG em algoritmos de processamento facial; e um novo conjunto de dados para avaliação de qualidade de imagem e classificação de distorção em imagens faciais.Biblioteca Digitais de Teses e Dissertações da USPBressan, GraçaPacheco Reina, Patricia Alejandra 2021-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-25102021-151818/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:07Zoai:teses.usp.br:tde-25102021-151818Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Convolutional neural network for distortion Classification in face images. Rede neural convolucional para classificação de distorções em imagens de rostos. |
title |
Convolutional neural network for distortion Classification in face images. |
spellingShingle |
Convolutional neural network for distortion Classification in face images. Pacheco Reina, Patricia Alejandra Algorítmos Classificação de distorção CNN CNN Distortion classification FIQA FIQA. Image quality Imagem (Qualidade) |
title_short |
Convolutional neural network for distortion Classification in face images. |
title_full |
Convolutional neural network for distortion Classification in face images. |
title_fullStr |
Convolutional neural network for distortion Classification in face images. |
title_full_unstemmed |
Convolutional neural network for distortion Classification in face images. |
title_sort |
Convolutional neural network for distortion Classification in face images. |
author |
Pacheco Reina, Patricia Alejandra |
author_facet |
Pacheco Reina, Patricia Alejandra |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bressan, Graça |
dc.contributor.author.fl_str_mv |
Pacheco Reina, Patricia Alejandra |
dc.subject.por.fl_str_mv |
Algorítmos Classificação de distorção CNN CNN Distortion classification FIQA FIQA. Image quality Imagem (Qualidade) |
topic |
Algorítmos Classificação de distorção CNN CNN Distortion classification FIQA FIQA. Image quality Imagem (Qualidade) |
description |
Face processing algorithms are becoming more popular in recent days due to the great domain of application in which they can be used. As a consequence, research about the quality of face images is also increasing. The current approach to Face Image Quality Assessment (FIQA) is focused on improving the performance of face recognition systems, as a result, current FIQA algorithms don\'t provide an indication of quality, but a performance estimation for face recognition algorithms. This approach makes the FIQA algorithms potentially unsuited for other scenarios regarding face images, and susceptible to inherit the limitations of face recognition. The present work tackles the main limitations of the current FIQA algorithms by proposing a new approach based on the distortions affecting the images. We developed two models based on Convolutional Neural Networks (CNN), to classify facial images according to the type and the degree of the distortion present in them. The models\' output provides qualitative information about the quality of facial images, useful for face recognition systems, as well as other face processing algorithms. Additionally, the proposed method can be a starting point to image enhancement processes like denoising, and deblurring. Two other contributions can be outlined from this work: a comprehensive study about the impact of blur, noise, brightness, contrast, and JPEG compression in face processing algorithms; and a new dataset for image quality assessment and distortion classification in face images. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-25102021-151818/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-25102021-151818/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256536015962112 |