"Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"

Detalhes bibliográficos
Autor(a) principal: Ferro, Mariza
Data de Publicação: 2004
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112004-095938/
Resumo: O Aprendizado de Máquina trata da questão de como desenvolver programas de computador capazes de aprender um conceito ou hipótese a partir de um conjunto de exemplos ou casos observados. Baseado no conjunto de treinamento o algoritmo de aprendizado induz a classificação de uma hipótese capaz de determinar corretamente a classe de novos exemplos ainda não rotulados. Linguagens de descrição são necessárias para escrever exemplos, conhecimento do domínio bem como as hipóteses aprendidas a partir dos exemplos. Em geral, essas linguagens podem ser divididas em dois tipos: linguagem baseada em atributo-valor ou proposicional e linguagem relacional. Algoritmos de aprendizado são classificados como proposicional ou relacional dependendo da liguagem de descrição que eles utilizam. Além disso, no aprendizado simbólico o objetivo é gerar a classificação de hipóteses que possam ser facilmente interpretadas pelos humanos. Algoritmos de aprendizado proposicional utilizam a representação atributo-valor, a qual é inadequada para representar objetos estruturados e relações entre esses objetos. Por outro lado, a Programação lógica Indutiva (PLI) é realizada com o desenvolvimento de técnicas e ferramentas para o aprendizado relacional. Sistemas de PLI são capazes de aprender levando em consideração conhecimento do domínio na forma de um programa lógico e também usar a linguagem de programas lógicos para descrever o conhecimento induzido. Neste trabalho foi implementado um módulo chamado Kaeru para converter dados no formato atributo-valor para o formato relacional utilizado pelo sistema de PLI Aleph. Uma série de experimentos foram realizados com quatro conjuntos de dados naturais e um conjunto de dados real no formato atributo valor. Utilizando o módulo conversor Kaeru esses dados foram convertidos para o formato relacional utilizado pelo Aleph e hipóteses de classificação foram induzidas utilizando aprendizado proposicional bem como aprendizado relacional. É mostrado também, que o aprendizado proposicional pode ser utilizado para incrementar o conhecimento do domínio utilizado pelos sistemas de aprendizado relacional para melhorar a qualidade das hipóteses induzidas.
id USP_6d8718a3c49f68014fa37cc17b4660c2
oai_identifier_str oai:teses.usp.br:tde-16112004-095938
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional" aprendizado de máquinaartificial intelligenceinductive logic programminginteligência artificialmachine learningprogramação lógica indutivaO Aprendizado de Máquina trata da questão de como desenvolver programas de computador capazes de aprender um conceito ou hipótese a partir de um conjunto de exemplos ou casos observados. Baseado no conjunto de treinamento o algoritmo de aprendizado induz a classificação de uma hipótese capaz de determinar corretamente a classe de novos exemplos ainda não rotulados. Linguagens de descrição são necessárias para escrever exemplos, conhecimento do domínio bem como as hipóteses aprendidas a partir dos exemplos. Em geral, essas linguagens podem ser divididas em dois tipos: linguagem baseada em atributo-valor ou proposicional e linguagem relacional. Algoritmos de aprendizado são classificados como proposicional ou relacional dependendo da liguagem de descrição que eles utilizam. Além disso, no aprendizado simbólico o objetivo é gerar a classificação de hipóteses que possam ser facilmente interpretadas pelos humanos. Algoritmos de aprendizado proposicional utilizam a representação atributo-valor, a qual é inadequada para representar objetos estruturados e relações entre esses objetos. Por outro lado, a Programação lógica Indutiva (PLI) é realizada com o desenvolvimento de técnicas e ferramentas para o aprendizado relacional. Sistemas de PLI são capazes de aprender levando em consideração conhecimento do domínio na forma de um programa lógico e também usar a linguagem de programas lógicos para descrever o conhecimento induzido. Neste trabalho foi implementado um módulo chamado Kaeru para converter dados no formato atributo-valor para o formato relacional utilizado pelo sistema de PLI Aleph. Uma série de experimentos foram realizados com quatro conjuntos de dados naturais e um conjunto de dados real no formato atributo valor. Utilizando o módulo conversor Kaeru esses dados foram convertidos para o formato relacional utilizado pelo Aleph e hipóteses de classificação foram induzidas utilizando aprendizado proposicional bem como aprendizado relacional. É mostrado também, que o aprendizado proposicional pode ser utilizado para incrementar o conhecimento do domínio utilizado pelos sistemas de aprendizado relacional para melhorar a qualidade das hipóteses induzidas.Machine Learning addresses the question of how to build computer programs that learn a concept or hypotheses from a set of examples, objects or cases. Descriptive languages are necessary in machine learning to describe the set of examples, domain knowledge as well as the hypothesis learned from these examples. In general, these languages can be divided into two types: languages based on attribute values, or em propositional languages, and relational languages. Learning algorithms are often classified as propositional or relational taking into consideration the descriptive language they use. Typical propositional learning algorithms employ the attribute value representation, which is inadequate for problem-domains that require reasoning about the structure of objects in the domain and relations among such objects. On the other hand, Inductive Logig Programming (ILP) is concerned with the development of techniques and tools for relational learning. ILP systems are able to take into account domain knowledge in the form of a logic program and also use the language of logic programs for describing the induced knowledge or hypothesis. In this work we propose and implement a module, named kaeru, to convert data in the attribute-value format to the relational format used by the ILP system Aleph. We describe a series of experiments performed on four natural data sets and one real data set in the attribute value format. Using the kaeru module these data sets were converted to the relational format used by Aleph and classifying hipoteses were induced using propositional as well as relational learning. We also show that propositional knowledge can be used to increment the background knowledge used by relational learners in order to improve the induded hypotheses quality.Biblioteca Digitais de Teses e Dissertações da USPMonard, Maria CarolinaFerro, Mariza2004-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112004-095938/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:49Zoai:teses.usp.br:tde-16112004-095938Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
title "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
spellingShingle "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
Ferro, Mariza
aprendizado de máquina
artificial intelligence
inductive logic programming
inteligência artificial
machine learning
programação lógica indutiva
title_short "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
title_full "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
title_fullStr "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
title_full_unstemmed "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
title_sort "Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"
author Ferro, Mariza
author_facet Ferro, Mariza
author_role author
dc.contributor.none.fl_str_mv Monard, Maria Carolina
dc.contributor.author.fl_str_mv Ferro, Mariza
dc.subject.por.fl_str_mv aprendizado de máquina
artificial intelligence
inductive logic programming
inteligência artificial
machine learning
programação lógica indutiva
topic aprendizado de máquina
artificial intelligence
inductive logic programming
inteligência artificial
machine learning
programação lógica indutiva
description O Aprendizado de Máquina trata da questão de como desenvolver programas de computador capazes de aprender um conceito ou hipótese a partir de um conjunto de exemplos ou casos observados. Baseado no conjunto de treinamento o algoritmo de aprendizado induz a classificação de uma hipótese capaz de determinar corretamente a classe de novos exemplos ainda não rotulados. Linguagens de descrição são necessárias para escrever exemplos, conhecimento do domínio bem como as hipóteses aprendidas a partir dos exemplos. Em geral, essas linguagens podem ser divididas em dois tipos: linguagem baseada em atributo-valor ou proposicional e linguagem relacional. Algoritmos de aprendizado são classificados como proposicional ou relacional dependendo da liguagem de descrição que eles utilizam. Além disso, no aprendizado simbólico o objetivo é gerar a classificação de hipóteses que possam ser facilmente interpretadas pelos humanos. Algoritmos de aprendizado proposicional utilizam a representação atributo-valor, a qual é inadequada para representar objetos estruturados e relações entre esses objetos. Por outro lado, a Programação lógica Indutiva (PLI) é realizada com o desenvolvimento de técnicas e ferramentas para o aprendizado relacional. Sistemas de PLI são capazes de aprender levando em consideração conhecimento do domínio na forma de um programa lógico e também usar a linguagem de programas lógicos para descrever o conhecimento induzido. Neste trabalho foi implementado um módulo chamado Kaeru para converter dados no formato atributo-valor para o formato relacional utilizado pelo sistema de PLI Aleph. Uma série de experimentos foram realizados com quatro conjuntos de dados naturais e um conjunto de dados real no formato atributo valor. Utilizando o módulo conversor Kaeru esses dados foram convertidos para o formato relacional utilizado pelo Aleph e hipóteses de classificação foram induzidas utilizando aprendizado proposicional bem como aprendizado relacional. É mostrado também, que o aprendizado proposicional pode ser utilizado para incrementar o conhecimento do domínio utilizado pelos sistemas de aprendizado relacional para melhorar a qualidade das hipóteses induzidas.
publishDate 2004
dc.date.none.fl_str_mv 2004-09-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112004-095938/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112004-095938/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257083271970816