Estudo sobre a distribuição do n no dimensionamento de amostras

Detalhes bibliográficos
Autor(a) principal: Braga Junior, Rubens Leite do Canto
Data de Publicação: 1986
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/11/11134/tde-20210918-202855/
Resumo: Os procedimentos utilizados na obtenção de dimensionamentos de amostras se baseiam, regra geral, em levantamentos anteriores ou nas informações contidas numa amostra inicial. Neste caso esta amostra gerará estimativas de parâmetros que serão usados na obtenção do melhor tamanho de amostra. Desta forma estas estimativas são variáveis aleatórias, pois trabalhou-se com amostras iniciais tomadas aleatoriamente da população. Os objetivos deste trabalho são os de estudar as distribuições de probabilidade da variável aleatória n (tamanho da amostra) para diversas técnicas de amostragem probabilística e com base nestas distribuições obter valores médios não aleatórios para n. Supondo sempre populações normais, as principais conclusões foram as seguintes: No caso da Amostragem Casual Simples a distribuição de probabilidade de n é dada por (descrita na dissertação): onde n<sub>o</sub> = tamanho da amostra inicial pré-fixada; c = constante fixada a partir da precisão desejada para o levantamento. Esta variável tem como valor médio e variância (descrita na dissertação). Para a Amostragem Estratificada (Partilha Proporcional) tem-se (descrita na dissertação): onde L = número de estratos e c tem o mesmo significado do caso anterior, com média e variância iguais a (descrita na dissertação). Os resultados obtidos na Amostragem Sistemática são idênticos aos da Amostragem Casual Simples, quando é possível admitir-se que os elementos da população se sucedem de forma aleatória. Na Amostragem por Conglomerados em estágio único obteve-se a seguinte distribuição de probabilidade (descrita na dissertação): onde n<sub>o</sub> = nº de unidades primárias da amostra inicial; o M = nº de unidades secundárias por unidade primária. O valor médio e a variância de n são dadas por (descrita na dissertação). Finalmente pode-se observar que em todas as técnicas apresentadas, o valor médio da variável tamanho de amostra é dado em função apenas da precisão adotada para o levantamento e portanto não é um valor aleatório.
id USP_6e06c1390863b8f700ae7a6f9aa54da1
oai_identifier_str oai:teses.usp.br:tde-20210918-202855
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudo sobre a distribuição do n no dimensionamento de amostrasStudy about the n distribution in sample-sizeAMOSTRAGEMDISTRIBUIÇÃO NORMALOs procedimentos utilizados na obtenção de dimensionamentos de amostras se baseiam, regra geral, em levantamentos anteriores ou nas informações contidas numa amostra inicial. Neste caso esta amostra gerará estimativas de parâmetros que serão usados na obtenção do melhor tamanho de amostra. Desta forma estas estimativas são variáveis aleatórias, pois trabalhou-se com amostras iniciais tomadas aleatoriamente da população. Os objetivos deste trabalho são os de estudar as distribuições de probabilidade da variável aleatória n (tamanho da amostra) para diversas técnicas de amostragem probabilística e com base nestas distribuições obter valores médios não aleatórios para n. Supondo sempre populações normais, as principais conclusões foram as seguintes: No caso da Amostragem Casual Simples a distribuição de probabilidade de n é dada por (descrita na dissertação): onde n<sub>o</sub> = tamanho da amostra inicial pré-fixada; c = constante fixada a partir da precisão desejada para o levantamento. Esta variável tem como valor médio e variância (descrita na dissertação). Para a Amostragem Estratificada (Partilha Proporcional) tem-se (descrita na dissertação): onde L = número de estratos e c tem o mesmo significado do caso anterior, com média e variância iguais a (descrita na dissertação). Os resultados obtidos na Amostragem Sistemática são idênticos aos da Amostragem Casual Simples, quando é possível admitir-se que os elementos da população se sucedem de forma aleatória. Na Amostragem por Conglomerados em estágio único obteve-se a seguinte distribuição de probabilidade (descrita na dissertação): onde n<sub>o</sub> = nº de unidades primárias da amostra inicial; o M = nº de unidades secundárias por unidade primária. O valor médio e a variância de n são dadas por (descrita na dissertação). Finalmente pode-se observar que em todas as técnicas apresentadas, o valor médio da variável tamanho de amostra é dado em função apenas da precisão adotada para o levantamento e portanto não é um valor aleatório.The procedures used in obtaining sample­size are based, usually, on previously taken observed values or on information contained in an initial sample. In this last case, this sample will furnish parameter estimates which will be used in getting the best sample-size. Therefore, those estimates are actually random variables because the initial sample is taken randomly from the population. The objectives of this dissertation are: the study of probability distributions of the random sample-size by several sample techniques and, based on this distributions, to obtain the expected values for the sample-size. Considering only normal populations, the mean conclusions were: In the case of Non-stratified Sampling the probability distribution of n is given by (described in the dissertation), where n<sub>o</sub> = initial sample-size; c = fixed constant based on the desired precision. The expected value and variance of this variable are (described in the dissertation). In the case of Stratified Sampling (proportional partition) we get (described in the dissertation), where L = number of partitions; c = same meaning as the previous case with expected mean and variance given by (described in the dissertation). The results obtained in the Systematic Sampling are identical as the above cited, being possible to admit that the population elements are given in a random succession. In?the Cluster Sampling case (one stage), we get the following probability distribution (described in the dissertation) where n<sub>o</sub> = number of primary units in the-initial sample; M = number of secondary units by primary units. The value and variance of n are given by (described in the dissertation). Finally, we can observe that in all techniques presented, the expected values of the sample-size is only depending on the precision selected and, therefore is not a random variable.Biblioteca Digitais de Teses e Dissertações da USPCampos, Humberto deBraga Junior, Rubens Leite do Canto1986-09-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/11/11134/tde-20210918-202855/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-09-19T16:52:02Zoai:teses.usp.br:tde-20210918-202855Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-19T16:52:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudo sobre a distribuição do n no dimensionamento de amostras
Study about the n distribution in sample-size
title Estudo sobre a distribuição do n no dimensionamento de amostras
spellingShingle Estudo sobre a distribuição do n no dimensionamento de amostras
Braga Junior, Rubens Leite do Canto
AMOSTRAGEM
DISTRIBUIÇÃO NORMAL
title_short Estudo sobre a distribuição do n no dimensionamento de amostras
title_full Estudo sobre a distribuição do n no dimensionamento de amostras
title_fullStr Estudo sobre a distribuição do n no dimensionamento de amostras
title_full_unstemmed Estudo sobre a distribuição do n no dimensionamento de amostras
title_sort Estudo sobre a distribuição do n no dimensionamento de amostras
author Braga Junior, Rubens Leite do Canto
author_facet Braga Junior, Rubens Leite do Canto
author_role author
dc.contributor.none.fl_str_mv Campos, Humberto de
dc.contributor.author.fl_str_mv Braga Junior, Rubens Leite do Canto
dc.subject.por.fl_str_mv AMOSTRAGEM
DISTRIBUIÇÃO NORMAL
topic AMOSTRAGEM
DISTRIBUIÇÃO NORMAL
description Os procedimentos utilizados na obtenção de dimensionamentos de amostras se baseiam, regra geral, em levantamentos anteriores ou nas informações contidas numa amostra inicial. Neste caso esta amostra gerará estimativas de parâmetros que serão usados na obtenção do melhor tamanho de amostra. Desta forma estas estimativas são variáveis aleatórias, pois trabalhou-se com amostras iniciais tomadas aleatoriamente da população. Os objetivos deste trabalho são os de estudar as distribuições de probabilidade da variável aleatória n (tamanho da amostra) para diversas técnicas de amostragem probabilística e com base nestas distribuições obter valores médios não aleatórios para n. Supondo sempre populações normais, as principais conclusões foram as seguintes: No caso da Amostragem Casual Simples a distribuição de probabilidade de n é dada por (descrita na dissertação): onde n<sub>o</sub> = tamanho da amostra inicial pré-fixada; c = constante fixada a partir da precisão desejada para o levantamento. Esta variável tem como valor médio e variância (descrita na dissertação). Para a Amostragem Estratificada (Partilha Proporcional) tem-se (descrita na dissertação): onde L = número de estratos e c tem o mesmo significado do caso anterior, com média e variância iguais a (descrita na dissertação). Os resultados obtidos na Amostragem Sistemática são idênticos aos da Amostragem Casual Simples, quando é possível admitir-se que os elementos da população se sucedem de forma aleatória. Na Amostragem por Conglomerados em estágio único obteve-se a seguinte distribuição de probabilidade (descrita na dissertação): onde n<sub>o</sub> = nº de unidades primárias da amostra inicial; o M = nº de unidades secundárias por unidade primária. O valor médio e a variância de n são dadas por (descrita na dissertação). Finalmente pode-se observar que em todas as técnicas apresentadas, o valor médio da variável tamanho de amostra é dado em função apenas da precisão adotada para o levantamento e portanto não é um valor aleatório.
publishDate 1986
dc.date.none.fl_str_mv 1986-09-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/11/11134/tde-20210918-202855/
url https://teses.usp.br/teses/disponiveis/11/11134/tde-20210918-202855/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257210443268096