Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.

Detalhes bibliográficos
Autor(a) principal: Guirelli, Cleber Roberto
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3143/tde-19042007-142653/
Resumo: Hoje em dia, com a privatização e aumento da competitividade no mercado elétrico, as empresas precisam encontrar formas de melhorar a qualidade do serviço e garantir lucratividade. A previsão de carga de curto prazo é uma atividade indispensável à operação que pode melhorar a segurança e diminuir custos de geração. A fim de realizar a previsão da carga, é necessária a identificação de padrões de comportamento de consumo e da sua relação com variáveis exógenas ao sistema tais como condições climáticas. Originalmente o problema foi resolvido de forma matemática e estatística através de técnicas tais como as séries numéricas, que fornecem bons resultados, mas utilizam processos complexos e de difícil modelamento. O surgimento das técnicas de inteligência artificial forneceu uma nova ferramenta capaz de lidar com a grande massa de dados das cargas e inferir por si mesmo a relação entre as variáveis do sistema. Notadamente, as redes neurais e a lógica fuzzy se destacaram como as técnicas mais adequadas, sendo que já vem sendo estudadas e utilizadas para a previsão de carga a mais de 20 anos. Este trabalho apresenta uma metodologia para a previsão da curva de carga diária de áreas elétricas através do uso de técnicas de inteligência artificial, mais especificamente as redes neurais. Inicialmente são apresentadas as principais técnicas de previsão sendo dado maior detalhamento as redes neurais e a lógica fuzzy. É feita a análise dos dados necessários à previsão e seu tratamento. Em seguida, o processo do uso de redes neurais e lógica fuzzy na previsão é descrito e é apresentado o desenvolvimento e resultados obtidos com o desenvolvimento e implementação de um sistema de previsão com redes neurais na concessionária CTEEP Transmissão Paulista. Como contribuição dessa tese, a transformada Wavelet é analisada como ferramenta para a filtragem e compactação de dados na previsão com redes neurais.
id USP_6eabf977c3ae47ec00fc68313323acc2
oai_identifier_str oai:teses.usp.br:tde-19042007-142653
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.Short term load forecasting in eletrical areas using artificial inteligence.Artificial inteligenceFuzzyFuzzyInteligencia artificialLoad forecastingNeural networksPower systemsPrevisão de carga elétricaRedes neuraisSistemas elétricos de potênciaHoje em dia, com a privatização e aumento da competitividade no mercado elétrico, as empresas precisam encontrar formas de melhorar a qualidade do serviço e garantir lucratividade. A previsão de carga de curto prazo é uma atividade indispensável à operação que pode melhorar a segurança e diminuir custos de geração. A fim de realizar a previsão da carga, é necessária a identificação de padrões de comportamento de consumo e da sua relação com variáveis exógenas ao sistema tais como condições climáticas. Originalmente o problema foi resolvido de forma matemática e estatística através de técnicas tais como as séries numéricas, que fornecem bons resultados, mas utilizam processos complexos e de difícil modelamento. O surgimento das técnicas de inteligência artificial forneceu uma nova ferramenta capaz de lidar com a grande massa de dados das cargas e inferir por si mesmo a relação entre as variáveis do sistema. Notadamente, as redes neurais e a lógica fuzzy se destacaram como as técnicas mais adequadas, sendo que já vem sendo estudadas e utilizadas para a previsão de carga a mais de 20 anos. Este trabalho apresenta uma metodologia para a previsão da curva de carga diária de áreas elétricas através do uso de técnicas de inteligência artificial, mais especificamente as redes neurais. Inicialmente são apresentadas as principais técnicas de previsão sendo dado maior detalhamento as redes neurais e a lógica fuzzy. É feita a análise dos dados necessários à previsão e seu tratamento. Em seguida, o processo do uso de redes neurais e lógica fuzzy na previsão é descrito e é apresentado o desenvolvimento e resultados obtidos com o desenvolvimento e implementação de um sistema de previsão com redes neurais na concessionária CTEEP Transmissão Paulista. Como contribuição dessa tese, a transformada Wavelet é analisada como ferramenta para a filtragem e compactação de dados na previsão com redes neurais.Nowadays, with privatization of utility companies and increase in competition in the energy market, companies must increase their service quality and ensure profits. Short term load forecasting is essential for operation of power systems and can increases security and reduces generation costs. Forecasting the load demands the identification of load patterns and its relations with exogenous variables such as weather. Originally, the problem was solved using mathematics and statistics with techniques such as time series, which produces good results but are complex and have a difficult modeling. With the advent of artificial intelligence techniques, new tools capable of dealing with large amounts of data and learn by themselves system variables relations were available. Artificial neural networks and fuzzy logic came up as the most suitable for load forecasting that have been tested and used for load forecasting for the last 20 years. This work presents a methodology for daily load forecasting of electrical areas using artificial intelligence techniques, specifically neural networks. At first, forecasting techniques are presented with emphasis on neural networks and fuzzy logic. Acquisition and treatment of data are analyzed. The load forecasting using neural networks and fuzzy logic is described and the results of the development and tests of a load forecasting system at CTEEP Transmissão Paulista presented. As contribution of this thesis, Wavelet transform is analyzed as a tool for denoising and data compression for neural network load forecasting.Biblioteca Digitais de Teses e Dissertações da USPJardini, José AntonioGuirelli, Cleber Roberto2006-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3143/tde-19042007-142653/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-19042007-142653Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
Short term load forecasting in eletrical areas using artificial inteligence.
title Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
spellingShingle Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
Guirelli, Cleber Roberto
Artificial inteligence
Fuzzy
Fuzzy
Inteligencia artificial
Load forecasting
Neural networks
Power systems
Previsão de carga elétrica
Redes neurais
Sistemas elétricos de potência
title_short Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
title_full Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
title_fullStr Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
title_full_unstemmed Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
title_sort Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial.
author Guirelli, Cleber Roberto
author_facet Guirelli, Cleber Roberto
author_role author
dc.contributor.none.fl_str_mv Jardini, José Antonio
dc.contributor.author.fl_str_mv Guirelli, Cleber Roberto
dc.subject.por.fl_str_mv Artificial inteligence
Fuzzy
Fuzzy
Inteligencia artificial
Load forecasting
Neural networks
Power systems
Previsão de carga elétrica
Redes neurais
Sistemas elétricos de potência
topic Artificial inteligence
Fuzzy
Fuzzy
Inteligencia artificial
Load forecasting
Neural networks
Power systems
Previsão de carga elétrica
Redes neurais
Sistemas elétricos de potência
description Hoje em dia, com a privatização e aumento da competitividade no mercado elétrico, as empresas precisam encontrar formas de melhorar a qualidade do serviço e garantir lucratividade. A previsão de carga de curto prazo é uma atividade indispensável à operação que pode melhorar a segurança e diminuir custos de geração. A fim de realizar a previsão da carga, é necessária a identificação de padrões de comportamento de consumo e da sua relação com variáveis exógenas ao sistema tais como condições climáticas. Originalmente o problema foi resolvido de forma matemática e estatística através de técnicas tais como as séries numéricas, que fornecem bons resultados, mas utilizam processos complexos e de difícil modelamento. O surgimento das técnicas de inteligência artificial forneceu uma nova ferramenta capaz de lidar com a grande massa de dados das cargas e inferir por si mesmo a relação entre as variáveis do sistema. Notadamente, as redes neurais e a lógica fuzzy se destacaram como as técnicas mais adequadas, sendo que já vem sendo estudadas e utilizadas para a previsão de carga a mais de 20 anos. Este trabalho apresenta uma metodologia para a previsão da curva de carga diária de áreas elétricas através do uso de técnicas de inteligência artificial, mais especificamente as redes neurais. Inicialmente são apresentadas as principais técnicas de previsão sendo dado maior detalhamento as redes neurais e a lógica fuzzy. É feita a análise dos dados necessários à previsão e seu tratamento. Em seguida, o processo do uso de redes neurais e lógica fuzzy na previsão é descrito e é apresentado o desenvolvimento e resultados obtidos com o desenvolvimento e implementação de um sistema de previsão com redes neurais na concessionária CTEEP Transmissão Paulista. Como contribuição dessa tese, a transformada Wavelet é analisada como ferramenta para a filtragem e compactação de dados na previsão com redes neurais.
publishDate 2006
dc.date.none.fl_str_mv 2006-11-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3143/tde-19042007-142653/
url http://www.teses.usp.br/teses/disponiveis/3/3143/tde-19042007-142653/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257165390151680