Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/18/18134/tde-06122017-140613/ |
Resumo: | Neste trabalho, apresenta-se uma adaptação dos procedimentos utilizados nos códigos computacionais seqüenciais advindos do MEF, para utilizá-los em multicomputadores. Desenvolve-se uma rotina para a montagem do sistema linear particionado entre os diversos processadores. Resolve-se o sistema de equações lineares geradas mediante a rotina do PIM (Parallel Iterative Method). São feitas adaptações deste pacote para se aproveitar as características comuns do sistema linear gerado pelo MEF: esparsidade e simetria. A técnica de resolução do sistema em paralelo é otimizada com o uso de dois tipos de pré-condicionadores: a decomposição incompleta de Cholesky (IC) generalizado e o POLY(0) ou Jacobi. É feita uma aplicação para a solução de pavimento com o algoritmo-base totalmente paralelizado. Também é avaliada a solução do sistema de equações de uma treliça. Mostram-se resultados de speed-up, de eficiência e de tempo para estes dois modelos estruturais. Além disso, é feito um estudo em processamento seqüencial da performance dos pré-condicionadores genéricos (IC) e do advindo de uma série truncada de Neumann, também generalizada, utilizando-se modelos estruturais de placa e chapa. |
id |
USP_6fa5b8999aa9ba2e8de95dc68e884d59 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06122017-140613 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturaisMulticomputer finite element method analysis of usual structures modelsConjugate-gradients methodFinite element methodMétodo dos elementos finitosMétodo dos gradientes conjugadosMulticomputadoresMulticomputersParallel processingPré-condicionadoresPreconditionersProcessamento paraleloNeste trabalho, apresenta-se uma adaptação dos procedimentos utilizados nos códigos computacionais seqüenciais advindos do MEF, para utilizá-los em multicomputadores. Desenvolve-se uma rotina para a montagem do sistema linear particionado entre os diversos processadores. Resolve-se o sistema de equações lineares geradas mediante a rotina do PIM (Parallel Iterative Method). São feitas adaptações deste pacote para se aproveitar as características comuns do sistema linear gerado pelo MEF: esparsidade e simetria. A técnica de resolução do sistema em paralelo é otimizada com o uso de dois tipos de pré-condicionadores: a decomposição incompleta de Cholesky (IC) generalizado e o POLY(0) ou Jacobi. É feita uma aplicação para a solução de pavimento com o algoritmo-base totalmente paralelizado. Também é avaliada a solução do sistema de equações de uma treliça. Mostram-se resultados de speed-up, de eficiência e de tempo para estes dois modelos estruturais. Além disso, é feito um estudo em processamento seqüencial da performance dos pré-condicionadores genéricos (IC) e do advindo de uma série truncada de Neumann, também generalizada, utilizando-se modelos estruturais de placa e chapa.This work presents an adaptation of conventional finite element method (FEM) computing procedures to multicomputers. It is presented the procedure which the linear system of equations is split among the processor and its solution. It was improved a public software called PIM (Parallel Iterative Method) is used to solve this system of equations. These improvements explore efficiently the usual features of the FEM systems of equations: sparseness and symmetry. To improve the solution of the system, two different preconditioners are used: a generic Incomplete Cholesky (IC) and the Polynomial preconditioning (POLY(0) or Jacobi). It is carried out a full adaptation of the method to parallel computing with a program developed to analyse floor structures. The improved PIM is also used to solve the system of equations of a tri-dimensional truss. It is presented the speed-up, the efficiency and the time used in the resolution of the systems of equations for the floor and for the truss. It is also presented a study of performance in sequential processing of the generic (IC) and the generic Neumann series preconditioners in the analysis of plates in bending and in plane actions.Biblioteca Digitais de Teses e Dissertações da USPPaiva, João Batista deAlmeida, Valério da Silva1999-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18134/tde-06122017-140613/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-06122017-140613Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais Multicomputer finite element method analysis of usual structures models |
title |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais |
spellingShingle |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais Almeida, Valério da Silva Conjugate-gradients method Finite element method Método dos elementos finitos Método dos gradientes conjugados Multicomputadores Multicomputers Parallel processing Pré-condicionadores Preconditioners Processamento paralelo |
title_short |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais |
title_full |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais |
title_fullStr |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais |
title_full_unstemmed |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais |
title_sort |
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais |
author |
Almeida, Valério da Silva |
author_facet |
Almeida, Valério da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paiva, João Batista de |
dc.contributor.author.fl_str_mv |
Almeida, Valério da Silva |
dc.subject.por.fl_str_mv |
Conjugate-gradients method Finite element method Método dos elementos finitos Método dos gradientes conjugados Multicomputadores Multicomputers Parallel processing Pré-condicionadores Preconditioners Processamento paralelo |
topic |
Conjugate-gradients method Finite element method Método dos elementos finitos Método dos gradientes conjugados Multicomputadores Multicomputers Parallel processing Pré-condicionadores Preconditioners Processamento paralelo |
description |
Neste trabalho, apresenta-se uma adaptação dos procedimentos utilizados nos códigos computacionais seqüenciais advindos do MEF, para utilizá-los em multicomputadores. Desenvolve-se uma rotina para a montagem do sistema linear particionado entre os diversos processadores. Resolve-se o sistema de equações lineares geradas mediante a rotina do PIM (Parallel Iterative Method). São feitas adaptações deste pacote para se aproveitar as características comuns do sistema linear gerado pelo MEF: esparsidade e simetria. A técnica de resolução do sistema em paralelo é otimizada com o uso de dois tipos de pré-condicionadores: a decomposição incompleta de Cholesky (IC) generalizado e o POLY(0) ou Jacobi. É feita uma aplicação para a solução de pavimento com o algoritmo-base totalmente paralelizado. Também é avaliada a solução do sistema de equações de uma treliça. Mostram-se resultados de speed-up, de eficiência e de tempo para estes dois modelos estruturais. Além disso, é feito um estudo em processamento seqüencial da performance dos pré-condicionadores genéricos (IC) e do advindo de uma série truncada de Neumann, também generalizada, utilizando-se modelos estruturais de placa e chapa. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-03-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-06122017-140613/ |
url |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-06122017-140613/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256493238255616 |