Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.

Detalhes bibliográficos
Autor(a) principal: Franzoi Junior, Robert Eduard
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3137/tde-01062021-101757/
Resumo: The crude oil refinery scheduling optimization is a complex and challenging problem because of its large-scale and complex-scope non-convex MINLP formulation. Three main concepts have been adopted in both industry and academia to handle this issue. First, a simplified formulation is typically considered, which does not include all the processing units, tanks, flows, and variables from the real industrial problem. Second, the refinery scheduling formulation is broken down into subproblems to be hierarchically solved. Third, simulation-based instead of optimization-based approaches are still employed due to the intractability of such formulation. However, the recent advancements in decision-making modeling, computer-aided resources, and solution algorithms allow the modeling and optimization of previously intractable problems, provide resources for novel real-time industrial applications, and open opportunities for the development of novel and improved modeling and optimization strategies. The research topics addressed herein focus on handling complex formulations typically found in crude oil refinery scheduling applications. The novelty of this research consists of modeling and optimizing a complete crude oil refinery scheduling problem, including decomposition approaches for handling intractable formulations, improved network designs for blending and processing operations, rescheduling strategies for online applications, and surrogate modeling for integrated optimization environments. Decomposition approaches are useful for building simpler and tractable formulations from complex and large-scale problems. Improved processing and blending designs provide more accurate predictions, production flexibility, and increased economic value for the process. Modeling and solving heuristics are used to significantly reduce the computational effort by limiting the optimization search space in constructive rolling horizon strategies and by introducing iterative relaxations on mixed-integer linear programming problems. Rescheduling and parameter updating strategies mitigate plant-model mismatches by effectively handling uncertainties and disturbances, reducing inaccuracies, maintaining the state of the system updated, and providing a systematic fashion for online applications. Surrogate models can effectively replace complex formulations in order to allow the integration of unit-operation models within refinery scheduling optimization environments. The formulation and methodologies addressed herein are coherent with large-scale and complex-scope industrial applications in terms of applicability, operational constraints, refinery economics, and problem complexity and size. The results indicate that complex non-convex MINLP refinery scheduling formulations can be efficiently solved by utilizing decomposition, heuristic, machine learning, and rescheduling strategies,which would potentially provide improved modeling and optimization capabilities for real industrial applications.
id USP_70af8ad375010e805a456350bcd07035
oai_identifier_str oai:teses.usp.br:tde-01062021-101757
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.Otimização integrada da programação de produção no refino de petróleo: da descarga de óleo à entrega de combustíveis.Crude oil refiningHeuristic approachesHeurísticaModelagem e otimizaçãoModeling and optimizationModelos surrogadosOnline schedulingPetróleo (Refino)Programação de produção onlineSurrogate modelingThe crude oil refinery scheduling optimization is a complex and challenging problem because of its large-scale and complex-scope non-convex MINLP formulation. Three main concepts have been adopted in both industry and academia to handle this issue. First, a simplified formulation is typically considered, which does not include all the processing units, tanks, flows, and variables from the real industrial problem. Second, the refinery scheduling formulation is broken down into subproblems to be hierarchically solved. Third, simulation-based instead of optimization-based approaches are still employed due to the intractability of such formulation. However, the recent advancements in decision-making modeling, computer-aided resources, and solution algorithms allow the modeling and optimization of previously intractable problems, provide resources for novel real-time industrial applications, and open opportunities for the development of novel and improved modeling and optimization strategies. The research topics addressed herein focus on handling complex formulations typically found in crude oil refinery scheduling applications. The novelty of this research consists of modeling and optimizing a complete crude oil refinery scheduling problem, including decomposition approaches for handling intractable formulations, improved network designs for blending and processing operations, rescheduling strategies for online applications, and surrogate modeling for integrated optimization environments. Decomposition approaches are useful for building simpler and tractable formulations from complex and large-scale problems. Improved processing and blending designs provide more accurate predictions, production flexibility, and increased economic value for the process. Modeling and solving heuristics are used to significantly reduce the computational effort by limiting the optimization search space in constructive rolling horizon strategies and by introducing iterative relaxations on mixed-integer linear programming problems. Rescheduling and parameter updating strategies mitigate plant-model mismatches by effectively handling uncertainties and disturbances, reducing inaccuracies, maintaining the state of the system updated, and providing a systematic fashion for online applications. Surrogate models can effectively replace complex formulations in order to allow the integration of unit-operation models within refinery scheduling optimization environments. The formulation and methodologies addressed herein are coherent with large-scale and complex-scope industrial applications in terms of applicability, operational constraints, refinery economics, and problem complexity and size. The results indicate that complex non-convex MINLP refinery scheduling formulations can be efficiently solved by utilizing decomposition, heuristic, machine learning, and rescheduling strategies,which would potentially provide improved modeling and optimization capabilities for real industrial applications.A otimização da programação de produção em refinarias de petróleo é um problema complexo e desafiador devido a sua formulação MINLP não convexa em tamanho industrial. Três conceitos principais vêm sendo adotados na indústria e academia para lidar com esse problema. Primeiro, utiliza-se uma formulação simplificada que não inclui todas as unidades de processo, tanques, fluxos e variáveis do problema industrial. Segundo, o modelo de programação de produção é dividido em subproblemas a serem resolvidos hierarquicamente. Terceiro, ainda se utiliza abordagens baseadas em simulação ao invés de otimização devido à complexidade de tal formulação. Contudo, avanços recentes em métodos de tomada de decisão, na capacidade de processamento dos computadores e nos algoritmos de otimização permitem a modelagem e otimização de problemas anteriormente intratáveis, de modo a fornecer recursos para novas aplicações industriais em tempo real e gerar oportunidades para o desenvolvimento de melhores estratégias de modelagem e otimização. Neste trabalho são abordadas formulações complexas baseadas em problemas industriais de programação de produção em refinarias de petróleo. A novidade desta pesquisa consiste em modelar e otimizar tais modelos, incluindo características de design de processo para operações de mistura e processamento; abordagens de decomposição para formulações intratáveis; estratégias de reprogramação para aplicações em tempo real; e modelos aproximados para sistemas de otimização integrados. Abordagens de decomposição permitem construir formulações mais simples a partir de problemas complexos e de grande escala. Design aprimorados para operações de processamento e mistura fornecem previsões mais precisas, flexibilidade de produção e maior valor econômico para o processo. Heurísticas são utilizadas para reduzir significativamente o esforço computacional, limitando o espaço de busca na otimização através de estratégias em horizonte rolante e de técnicas de relaxação iterativas para problemas misto-inteiro lineares. Estratégias de reprogramação da produção e de atualização de parâmetros reduzem as incompatibilidades entre modelo e planta ao lidar com incertezas e distúrbios de maneira eficaz, reduzindo imprecisões, mantendo o sistema atualizado e fornecendo um modo sistemático para aplicações em tempo real. Modelos aproximados substituem formulações complexas e permitem a integração de modelos de unidades de processo em ambientes de otimização de programação de produção. As formulações e metodologias propostas são coerentes com aplicações industriais de grande escala em relação a restrições operacionais, valor agregado do processo e complexidade e tamanho do problema. Os resultados indicam que formulações MINLP não convexas de problemas de programação de produção em refinarias podem ser resolvidas eficientemente utilizando estratégias de decomposição, heurísticas e machine learning, o que pode potencialmente fornecer metodologias de modelagem e otimização adequadas para aplicações em problemas reais em escala industrial.Biblioteca Digitais de Teses e Dissertações da USPGut, Jorge Andrey WilhelmsMenezes, Brenno CastrillonFranzoi Junior, Robert Eduard2021-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3137/tde-01062021-101757/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-01T16:41:02Zoai:teses.usp.br:tde-01062021-101757Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-01T16:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
Otimização integrada da programação de produção no refino de petróleo: da descarga de óleo à entrega de combustíveis.
title Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
spellingShingle Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
Franzoi Junior, Robert Eduard
Crude oil refining
Heuristic approaches
Heurística
Modelagem e otimização
Modeling and optimization
Modelos surrogados
Online scheduling
Petróleo (Refino)
Programação de produção online
Surrogate modeling
title_short Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
title_full Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
title_fullStr Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
title_full_unstemmed Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
title_sort Integrated scheduling optimization in the crude oil refinery industry: from crude oil unloading to fuel deliveries.
author Franzoi Junior, Robert Eduard
author_facet Franzoi Junior, Robert Eduard
author_role author
dc.contributor.none.fl_str_mv Gut, Jorge Andrey Wilhelms
Menezes, Brenno Castrillon
dc.contributor.author.fl_str_mv Franzoi Junior, Robert Eduard
dc.subject.por.fl_str_mv Crude oil refining
Heuristic approaches
Heurística
Modelagem e otimização
Modeling and optimization
Modelos surrogados
Online scheduling
Petróleo (Refino)
Programação de produção online
Surrogate modeling
topic Crude oil refining
Heuristic approaches
Heurística
Modelagem e otimização
Modeling and optimization
Modelos surrogados
Online scheduling
Petróleo (Refino)
Programação de produção online
Surrogate modeling
description The crude oil refinery scheduling optimization is a complex and challenging problem because of its large-scale and complex-scope non-convex MINLP formulation. Three main concepts have been adopted in both industry and academia to handle this issue. First, a simplified formulation is typically considered, which does not include all the processing units, tanks, flows, and variables from the real industrial problem. Second, the refinery scheduling formulation is broken down into subproblems to be hierarchically solved. Third, simulation-based instead of optimization-based approaches are still employed due to the intractability of such formulation. However, the recent advancements in decision-making modeling, computer-aided resources, and solution algorithms allow the modeling and optimization of previously intractable problems, provide resources for novel real-time industrial applications, and open opportunities for the development of novel and improved modeling and optimization strategies. The research topics addressed herein focus on handling complex formulations typically found in crude oil refinery scheduling applications. The novelty of this research consists of modeling and optimizing a complete crude oil refinery scheduling problem, including decomposition approaches for handling intractable formulations, improved network designs for blending and processing operations, rescheduling strategies for online applications, and surrogate modeling for integrated optimization environments. Decomposition approaches are useful for building simpler and tractable formulations from complex and large-scale problems. Improved processing and blending designs provide more accurate predictions, production flexibility, and increased economic value for the process. Modeling and solving heuristics are used to significantly reduce the computational effort by limiting the optimization search space in constructive rolling horizon strategies and by introducing iterative relaxations on mixed-integer linear programming problems. Rescheduling and parameter updating strategies mitigate plant-model mismatches by effectively handling uncertainties and disturbances, reducing inaccuracies, maintaining the state of the system updated, and providing a systematic fashion for online applications. Surrogate models can effectively replace complex formulations in order to allow the integration of unit-operation models within refinery scheduling optimization environments. The formulation and methodologies addressed herein are coherent with large-scale and complex-scope industrial applications in terms of applicability, operational constraints, refinery economics, and problem complexity and size. The results indicate that complex non-convex MINLP refinery scheduling formulations can be efficiently solved by utilizing decomposition, heuristic, machine learning, and rescheduling strategies,which would potentially provide improved modeling and optimization capabilities for real industrial applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3137/tde-01062021-101757/
url https://www.teses.usp.br/teses/disponiveis/3/3137/tde-01062021-101757/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090275564322816