Redes neurais para grafos e suas aplicações aos sistemas complexos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-07062022-132235/ |
Resumo: | Sistemas complexos são compostos de diversos componentes que interagem entre si. Uma abordagem natural para estes tipos de sistemas é utilizando a abstração matemática de grafos. Em diversos contextos do mundo real é possível se utilizar técnicas de redes complexas para a modelagem desses sistemas. Nestes sistemas podem ocorrer processos dinâmicos como por exemplo a propagação de informação e a propagação de doenças. Neste trabalho consideramos a utilização de técnicas de redes neurais artificiais para dados estruturados como grafos com o objetivo de estudar a propagação de rumor em redes complexas e a detecção de estruturas de comunidades. Para o caso de propagação de rumor, foi proposto um modelo baseado em redes neurais para grafos com o objetivo de recuperar a origem de propagação em grafos artificiais com estruturas de comunidades e para a detecção de estruturas de comunidades foi avaliado o potencial do aprendizado de representações por redes neurais para grafos em comparação a algoritmos tradicionais da ciência de redes complexas. |
id |
USP_70b976241f292ffbb7d614790f90c78a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07062022-132235 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Redes neurais para grafos e suas aplicações aos sistemas complexosGraph neural networks and its applications to complex systemsAprendizado de máquinaComplex systemsGraph neural networksMachine learningRedes neurais para grafosSistemas complexosSistemas complexos são compostos de diversos componentes que interagem entre si. Uma abordagem natural para estes tipos de sistemas é utilizando a abstração matemática de grafos. Em diversos contextos do mundo real é possível se utilizar técnicas de redes complexas para a modelagem desses sistemas. Nestes sistemas podem ocorrer processos dinâmicos como por exemplo a propagação de informação e a propagação de doenças. Neste trabalho consideramos a utilização de técnicas de redes neurais artificiais para dados estruturados como grafos com o objetivo de estudar a propagação de rumor em redes complexas e a detecção de estruturas de comunidades. Para o caso de propagação de rumor, foi proposto um modelo baseado em redes neurais para grafos com o objetivo de recuperar a origem de propagação em grafos artificiais com estruturas de comunidades e para a detecção de estruturas de comunidades foi avaliado o potencial do aprendizado de representações por redes neurais para grafos em comparação a algoritmos tradicionais da ciência de redes complexas.Complex systems are composed of several components that interact with each other. A natural approach for these types of systems is to use mathematical graph abstraction. In different contexts in the real world, it is possible to use complex network techniques to model these systems. In these systems, dynamic processes such as the spread of information and the spread of disease can occur. In this work we consider the use of artificial neural network techniques for graph-structured data in order to study the propagation of rumor in complex networks and the detection of community structures. For the proposed case of rumor, a model was developed based on graph neural networks for the porpuse of detected the source of the a rumour in graphs with community structure and for community dectection was evaluate the potential of graph neural networks in comparison to traditional methods of the network science.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, Francisco AparecidoCarvalho, Guilherme Michel Lima de2022-04-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-07062022-132235/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-06-07T16:51:18Zoai:teses.usp.br:tde-07062022-132235Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-06-07T16:51:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Redes neurais para grafos e suas aplicações aos sistemas complexos Graph neural networks and its applications to complex systems |
title |
Redes neurais para grafos e suas aplicações aos sistemas complexos |
spellingShingle |
Redes neurais para grafos e suas aplicações aos sistemas complexos Carvalho, Guilherme Michel Lima de Aprendizado de máquina Complex systems Graph neural networks Machine learning Redes neurais para grafos Sistemas complexos |
title_short |
Redes neurais para grafos e suas aplicações aos sistemas complexos |
title_full |
Redes neurais para grafos e suas aplicações aos sistemas complexos |
title_fullStr |
Redes neurais para grafos e suas aplicações aos sistemas complexos |
title_full_unstemmed |
Redes neurais para grafos e suas aplicações aos sistemas complexos |
title_sort |
Redes neurais para grafos e suas aplicações aos sistemas complexos |
author |
Carvalho, Guilherme Michel Lima de |
author_facet |
Carvalho, Guilherme Michel Lima de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Francisco Aparecido |
dc.contributor.author.fl_str_mv |
Carvalho, Guilherme Michel Lima de |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Complex systems Graph neural networks Machine learning Redes neurais para grafos Sistemas complexos |
topic |
Aprendizado de máquina Complex systems Graph neural networks Machine learning Redes neurais para grafos Sistemas complexos |
description |
Sistemas complexos são compostos de diversos componentes que interagem entre si. Uma abordagem natural para estes tipos de sistemas é utilizando a abstração matemática de grafos. Em diversos contextos do mundo real é possível se utilizar técnicas de redes complexas para a modelagem desses sistemas. Nestes sistemas podem ocorrer processos dinâmicos como por exemplo a propagação de informação e a propagação de doenças. Neste trabalho consideramos a utilização de técnicas de redes neurais artificiais para dados estruturados como grafos com o objetivo de estudar a propagação de rumor em redes complexas e a detecção de estruturas de comunidades. Para o caso de propagação de rumor, foi proposto um modelo baseado em redes neurais para grafos com o objetivo de recuperar a origem de propagação em grafos artificiais com estruturas de comunidades e para a detecção de estruturas de comunidades foi avaliado o potencial do aprendizado de representações por redes neurais para grafos em comparação a algoritmos tradicionais da ciência de redes complexas. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-07062022-132235/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-07062022-132235/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256786688540672 |