Quantification and classification of coffee fruits with computer vision
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/ |
Resumo: | Coffee is one of the most consumed and traded beverages in the world. Knowledge about the yield and maturation stage of coffee fruits before and after the harvest is still a challenge for the coffee sector. The development of a system that allows obtaining this information quickly and non-invasively is essential for the efficient management of the crop. Advances in monitoring the coffee crop should allow for the generation of maps that present essential information for diagnosing the spatial and temporal variability of the crop and, consequently, for the efficient use of precision agriculture techniques. One of the alternatives used to estimate the yield and ripening stage of coffee fruits would be the use of computer vision techniques based on object detection and classification. The use of computer vision offers a low-cost and accessible solution, with great potential for improving the monitoring of coffee plantations. This study was divided into three chapters that present the use of computer vision models based on the YOLO neural network architecture to detect coffee fruits under different contexts. In chapter 1, the model is used to detect and classify coffee fruits on tree branches, a tool that can help small and large producers to objectively decide when to start the harvest. In chapter 2, the model is used to detect and count coffee fruits during mechanized harvesting, which allows the generation of yield maps for the harvested areas. In chapter 3, the model is used to detect and classify coffee fruits at different stages of maturation during mechanized harvesting, which allows for the spatialization of the coffee maturation stage for the harvested areas. The computer vision models based on the YOLOv4 architecture and an input image with a resolution of 800x800 pixels had mean average precision (mAP) of 81.2%, 83.5% and 91.8% for the scenarios experienced in chapters 1, 2 and 3, respectively. The yield map estimated from the detections obtained by the model was able to explain 81% of the variance of the yield map used as reference. The knowledge of the spatial and temporal variability of information such as productivity and maturation stage are essential for the implementation of precision agriculture techniques in coffee crops. |
id |
USP_71419a0262e0f46e0ae0f853949f3a09 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14122021-160103 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Quantification and classification of coffee fruits with computer visionQuantificação e classificação de frutos de café com visão computacionalAgricultura de precisãoCafeiculturaCoffee sectorColheita mecanizadaComputer visionMechanized harvestingPrecision AgricultureVisão computacionalYOLOYOLOCoffee is one of the most consumed and traded beverages in the world. Knowledge about the yield and maturation stage of coffee fruits before and after the harvest is still a challenge for the coffee sector. The development of a system that allows obtaining this information quickly and non-invasively is essential for the efficient management of the crop. Advances in monitoring the coffee crop should allow for the generation of maps that present essential information for diagnosing the spatial and temporal variability of the crop and, consequently, for the efficient use of precision agriculture techniques. One of the alternatives used to estimate the yield and ripening stage of coffee fruits would be the use of computer vision techniques based on object detection and classification. The use of computer vision offers a low-cost and accessible solution, with great potential for improving the monitoring of coffee plantations. This study was divided into three chapters that present the use of computer vision models based on the YOLO neural network architecture to detect coffee fruits under different contexts. In chapter 1, the model is used to detect and classify coffee fruits on tree branches, a tool that can help small and large producers to objectively decide when to start the harvest. In chapter 2, the model is used to detect and count coffee fruits during mechanized harvesting, which allows the generation of yield maps for the harvested areas. In chapter 3, the model is used to detect and classify coffee fruits at different stages of maturation during mechanized harvesting, which allows for the spatialization of the coffee maturation stage for the harvested areas. The computer vision models based on the YOLOv4 architecture and an input image with a resolution of 800x800 pixels had mean average precision (mAP) of 81.2%, 83.5% and 91.8% for the scenarios experienced in chapters 1, 2 and 3, respectively. The yield map estimated from the detections obtained by the model was able to explain 81% of the variance of the yield map used as reference. The knowledge of the spatial and temporal variability of information such as productivity and maturation stage are essential for the implementation of precision agriculture techniques in coffee crops.O café é uma das bebidas mais consumidas e comercializadas do mundo. O conhecimento sobre a produtividade e o estágio de maturação dos frutos de café antes, e após a colheita, ainda é um desafio para o setor cafeeiro. A criação de um sistema que permita obter essa informação de forma rápida e não invasiva é fundamental para uma gestão eficiente da lavoura. O avanço do monitoramento da cultura do café deve permitir a geração de mapas que apresentem informações essenciais na diagnose da variabilidade espacial e temporal da lavoura e, consequentemente, no eficiente uso das técnicas de agricultura de precisão. Umas das alternativas utilizadas para estimar a produtividade e o estágio de maturação dos frutos de café, seria a utilização de técnicas de visão computacional baseadas na detecção e classificação de objetos. O uso de visão computacional oferece solução de baixo custo e acessível, apresentado grande potencial para a melhoria do monitoramento da lavoura de café. Este estudo foi dividido em três capítulos que apresentam o uso de modelos de visão computacional baseados na arquitetura de redes neurais YOLO para detectar frutos de café em diferentes contextos. No capítulo 1, o modelo é utilizado para detectar e classificar frutos de café na planta, uma ferramenta que pode auxiliar pequenos e grandes produtores na decisão do início da colheita de forma rápida e objetiva. No capítulo 2, o modelo é utilizado para detectar e contar frutos de café durante a colheita mecanizada, o que permite que se gere mapas de produtividade para as áreas colhidas. No capítulo 3, o modelo é utilizado para detectar e classificar os frutos de café em diferentes estágios de maturação durante a colheita mecanizada, o que permite a espacialização do estágio de maturação do café para os talhões colhidos. Os modelos de visão computacional baseados na arquitetura YOLOv4 e uma imagem de entrada com resolução de 800x800 pixels apresentaram precisão média (mAP) de 81,2%, 83,5% e 91,8% para os cenários experimentados nos capítulos 1, 2 e 3, respectivamente. O mapa de produtividade estimado a partir das detecções obtidas pelo modelo foi capaz de explicar 81% da variância do mapa de produtividade utilizado como referência. O conhecimento da variabilidade espacial e temporal de informações como produtividade e o estágio de maturação são fundamentais para implantação de técnicas de agricultura de precisão na lavoura de café.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloBazame, Helizani Couto2021-11-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-12-14T20:47:02Zoai:teses.usp.br:tde-14122021-160103Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-12-14T20:47:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Quantification and classification of coffee fruits with computer vision Quantificação e classificação de frutos de café com visão computacional |
title |
Quantification and classification of coffee fruits with computer vision |
spellingShingle |
Quantification and classification of coffee fruits with computer vision Bazame, Helizani Couto Agricultura de precisão Cafeicultura Coffee sector Colheita mecanizada Computer vision Mechanized harvesting Precision Agriculture Visão computacional YOLO YOLO |
title_short |
Quantification and classification of coffee fruits with computer vision |
title_full |
Quantification and classification of coffee fruits with computer vision |
title_fullStr |
Quantification and classification of coffee fruits with computer vision |
title_full_unstemmed |
Quantification and classification of coffee fruits with computer vision |
title_sort |
Quantification and classification of coffee fruits with computer vision |
author |
Bazame, Helizani Couto |
author_facet |
Bazame, Helizani Couto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Molin, Jose Paulo |
dc.contributor.author.fl_str_mv |
Bazame, Helizani Couto |
dc.subject.por.fl_str_mv |
Agricultura de precisão Cafeicultura Coffee sector Colheita mecanizada Computer vision Mechanized harvesting Precision Agriculture Visão computacional YOLO YOLO |
topic |
Agricultura de precisão Cafeicultura Coffee sector Colheita mecanizada Computer vision Mechanized harvesting Precision Agriculture Visão computacional YOLO YOLO |
description |
Coffee is one of the most consumed and traded beverages in the world. Knowledge about the yield and maturation stage of coffee fruits before and after the harvest is still a challenge for the coffee sector. The development of a system that allows obtaining this information quickly and non-invasively is essential for the efficient management of the crop. Advances in monitoring the coffee crop should allow for the generation of maps that present essential information for diagnosing the spatial and temporal variability of the crop and, consequently, for the efficient use of precision agriculture techniques. One of the alternatives used to estimate the yield and ripening stage of coffee fruits would be the use of computer vision techniques based on object detection and classification. The use of computer vision offers a low-cost and accessible solution, with great potential for improving the monitoring of coffee plantations. This study was divided into three chapters that present the use of computer vision models based on the YOLO neural network architecture to detect coffee fruits under different contexts. In chapter 1, the model is used to detect and classify coffee fruits on tree branches, a tool that can help small and large producers to objectively decide when to start the harvest. In chapter 2, the model is used to detect and count coffee fruits during mechanized harvesting, which allows the generation of yield maps for the harvested areas. In chapter 3, the model is used to detect and classify coffee fruits at different stages of maturation during mechanized harvesting, which allows for the spatialization of the coffee maturation stage for the harvested areas. The computer vision models based on the YOLOv4 architecture and an input image with a resolution of 800x800 pixels had mean average precision (mAP) of 81.2%, 83.5% and 91.8% for the scenarios experienced in chapters 1, 2 and 3, respectively. The yield map estimated from the detections obtained by the model was able to explain 81% of the variance of the yield map used as reference. The knowledge of the spatial and temporal variability of information such as productivity and maturation stage are essential for the implementation of precision agriculture techniques in coffee crops. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256979919077376 |