Quantification and classification of coffee fruits with computer vision

Detalhes bibliográficos
Autor(a) principal: Bazame, Helizani Couto
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/
Resumo: Coffee is one of the most consumed and traded beverages in the world. Knowledge about the yield and maturation stage of coffee fruits before and after the harvest is still a challenge for the coffee sector. The development of a system that allows obtaining this information quickly and non-invasively is essential for the efficient management of the crop. Advances in monitoring the coffee crop should allow for the generation of maps that present essential information for diagnosing the spatial and temporal variability of the crop and, consequently, for the efficient use of precision agriculture techniques. One of the alternatives used to estimate the yield and ripening stage of coffee fruits would be the use of computer vision techniques based on object detection and classification. The use of computer vision offers a low-cost and accessible solution, with great potential for improving the monitoring of coffee plantations. This study was divided into three chapters that present the use of computer vision models based on the YOLO neural network architecture to detect coffee fruits under different contexts. In chapter 1, the model is used to detect and classify coffee fruits on tree branches, a tool that can help small and large producers to objectively decide when to start the harvest. In chapter 2, the model is used to detect and count coffee fruits during mechanized harvesting, which allows the generation of yield maps for the harvested areas. In chapter 3, the model is used to detect and classify coffee fruits at different stages of maturation during mechanized harvesting, which allows for the spatialization of the coffee maturation stage for the harvested areas. The computer vision models based on the YOLOv4 architecture and an input image with a resolution of 800x800 pixels had mean average precision (mAP) of 81.2%, 83.5% and 91.8% for the scenarios experienced in chapters 1, 2 and 3, respectively. The yield map estimated from the detections obtained by the model was able to explain 81% of the variance of the yield map used as reference. The knowledge of the spatial and temporal variability of information such as productivity and maturation stage are essential for the implementation of precision agriculture techniques in coffee crops.
id USP_71419a0262e0f46e0ae0f853949f3a09
oai_identifier_str oai:teses.usp.br:tde-14122021-160103
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Quantification and classification of coffee fruits with computer visionQuantificação e classificação de frutos de café com visão computacionalAgricultura de precisãoCafeiculturaCoffee sectorColheita mecanizadaComputer visionMechanized harvestingPrecision AgricultureVisão computacionalYOLOYOLOCoffee is one of the most consumed and traded beverages in the world. Knowledge about the yield and maturation stage of coffee fruits before and after the harvest is still a challenge for the coffee sector. The development of a system that allows obtaining this information quickly and non-invasively is essential for the efficient management of the crop. Advances in monitoring the coffee crop should allow for the generation of maps that present essential information for diagnosing the spatial and temporal variability of the crop and, consequently, for the efficient use of precision agriculture techniques. One of the alternatives used to estimate the yield and ripening stage of coffee fruits would be the use of computer vision techniques based on object detection and classification. The use of computer vision offers a low-cost and accessible solution, with great potential for improving the monitoring of coffee plantations. This study was divided into three chapters that present the use of computer vision models based on the YOLO neural network architecture to detect coffee fruits under different contexts. In chapter 1, the model is used to detect and classify coffee fruits on tree branches, a tool that can help small and large producers to objectively decide when to start the harvest. In chapter 2, the model is used to detect and count coffee fruits during mechanized harvesting, which allows the generation of yield maps for the harvested areas. In chapter 3, the model is used to detect and classify coffee fruits at different stages of maturation during mechanized harvesting, which allows for the spatialization of the coffee maturation stage for the harvested areas. The computer vision models based on the YOLOv4 architecture and an input image with a resolution of 800x800 pixels had mean average precision (mAP) of 81.2%, 83.5% and 91.8% for the scenarios experienced in chapters 1, 2 and 3, respectively. The yield map estimated from the detections obtained by the model was able to explain 81% of the variance of the yield map used as reference. The knowledge of the spatial and temporal variability of information such as productivity and maturation stage are essential for the implementation of precision agriculture techniques in coffee crops.O café é uma das bebidas mais consumidas e comercializadas do mundo. O conhecimento sobre a produtividade e o estágio de maturação dos frutos de café antes, e após a colheita, ainda é um desafio para o setor cafeeiro. A criação de um sistema que permita obter essa informação de forma rápida e não invasiva é fundamental para uma gestão eficiente da lavoura. O avanço do monitoramento da cultura do café deve permitir a geração de mapas que apresentem informações essenciais na diagnose da variabilidade espacial e temporal da lavoura e, consequentemente, no eficiente uso das técnicas de agricultura de precisão. Umas das alternativas utilizadas para estimar a produtividade e o estágio de maturação dos frutos de café, seria a utilização de técnicas de visão computacional baseadas na detecção e classificação de objetos. O uso de visão computacional oferece solução de baixo custo e acessível, apresentado grande potencial para a melhoria do monitoramento da lavoura de café. Este estudo foi dividido em três capítulos que apresentam o uso de modelos de visão computacional baseados na arquitetura de redes neurais YOLO para detectar frutos de café em diferentes contextos. No capítulo 1, o modelo é utilizado para detectar e classificar frutos de café na planta, uma ferramenta que pode auxiliar pequenos e grandes produtores na decisão do início da colheita de forma rápida e objetiva. No capítulo 2, o modelo é utilizado para detectar e contar frutos de café durante a colheita mecanizada, o que permite que se gere mapas de produtividade para as áreas colhidas. No capítulo 3, o modelo é utilizado para detectar e classificar os frutos de café em diferentes estágios de maturação durante a colheita mecanizada, o que permite a espacialização do estágio de maturação do café para os talhões colhidos. Os modelos de visão computacional baseados na arquitetura YOLOv4 e uma imagem de entrada com resolução de 800x800 pixels apresentaram precisão média (mAP) de 81,2%, 83,5% e 91,8% para os cenários experimentados nos capítulos 1, 2 e 3, respectivamente. O mapa de produtividade estimado a partir das detecções obtidas pelo modelo foi capaz de explicar 81% da variância do mapa de produtividade utilizado como referência. O conhecimento da variabilidade espacial e temporal de informações como produtividade e o estágio de maturação são fundamentais para implantação de técnicas de agricultura de precisão na lavoura de café.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloBazame, Helizani Couto2021-11-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-12-14T20:47:02Zoai:teses.usp.br:tde-14122021-160103Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-12-14T20:47:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Quantification and classification of coffee fruits with computer vision
Quantificação e classificação de frutos de café com visão computacional
title Quantification and classification of coffee fruits with computer vision
spellingShingle Quantification and classification of coffee fruits with computer vision
Bazame, Helizani Couto
Agricultura de precisão
Cafeicultura
Coffee sector
Colheita mecanizada
Computer vision
Mechanized harvesting
Precision Agriculture
Visão computacional
YOLO
YOLO
title_short Quantification and classification of coffee fruits with computer vision
title_full Quantification and classification of coffee fruits with computer vision
title_fullStr Quantification and classification of coffee fruits with computer vision
title_full_unstemmed Quantification and classification of coffee fruits with computer vision
title_sort Quantification and classification of coffee fruits with computer vision
author Bazame, Helizani Couto
author_facet Bazame, Helizani Couto
author_role author
dc.contributor.none.fl_str_mv Molin, Jose Paulo
dc.contributor.author.fl_str_mv Bazame, Helizani Couto
dc.subject.por.fl_str_mv Agricultura de precisão
Cafeicultura
Coffee sector
Colheita mecanizada
Computer vision
Mechanized harvesting
Precision Agriculture
Visão computacional
YOLO
YOLO
topic Agricultura de precisão
Cafeicultura
Coffee sector
Colheita mecanizada
Computer vision
Mechanized harvesting
Precision Agriculture
Visão computacional
YOLO
YOLO
description Coffee is one of the most consumed and traded beverages in the world. Knowledge about the yield and maturation stage of coffee fruits before and after the harvest is still a challenge for the coffee sector. The development of a system that allows obtaining this information quickly and non-invasively is essential for the efficient management of the crop. Advances in monitoring the coffee crop should allow for the generation of maps that present essential information for diagnosing the spatial and temporal variability of the crop and, consequently, for the efficient use of precision agriculture techniques. One of the alternatives used to estimate the yield and ripening stage of coffee fruits would be the use of computer vision techniques based on object detection and classification. The use of computer vision offers a low-cost and accessible solution, with great potential for improving the monitoring of coffee plantations. This study was divided into three chapters that present the use of computer vision models based on the YOLO neural network architecture to detect coffee fruits under different contexts. In chapter 1, the model is used to detect and classify coffee fruits on tree branches, a tool that can help small and large producers to objectively decide when to start the harvest. In chapter 2, the model is used to detect and count coffee fruits during mechanized harvesting, which allows the generation of yield maps for the harvested areas. In chapter 3, the model is used to detect and classify coffee fruits at different stages of maturation during mechanized harvesting, which allows for the spatialization of the coffee maturation stage for the harvested areas. The computer vision models based on the YOLOv4 architecture and an input image with a resolution of 800x800 pixels had mean average precision (mAP) of 81.2%, 83.5% and 91.8% for the scenarios experienced in chapters 1, 2 and 3, respectively. The yield map estimated from the detections obtained by the model was able to explain 81% of the variance of the yield map used as reference. The knowledge of the spatial and temporal variability of information such as productivity and maturation stage are essential for the implementation of precision agriculture techniques in coffee crops.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/
url https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14122021-160103/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256979919077376