Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092022-094249/ |
Resumo: | A evasão escolar representa uma preocupação para as instituições de ensino, sobretudo de ensino superior, e interfere diretamente na gestão e nos resultados acadêmicos das instituições, podendo muitas vezes estar relacionada diretamente a problemas sociais. A literatura aponta que a análise desse fenômeno é um fator positivo para o desenvolvimento de programas de combate ao abandono escolar, além do planejamento de ações intervencionistas e acompanhamento acadêmico. Outros estudos apontam resultados positivos na utilização de técnicas de Aprendizado de Máquina para a identificação prévia de estudantes em vias de evadir, isso com base na exploração dos dados dos sistemas acadêmicos. Apesar de haver estudos com Aprendizado de Máquina, não foram encontrados registros de trabalhos focados em desenvolver estratégias de intervenção apoiadas pela visualização de dados acadêmicos. Este trabalho buscou entender o panorama geral de uma universidade pública brasileira, a UFSCar, utilizando a exploração e classificação de dados acadêmicos por meio de técnicas de Aprendizado de Máquina. A análise dos dados permitiu obter um panorama geral dos dados de evasão da universidade e viabilizou a elaboração de relatórios digitais com informações e estatísticas para auxiliar os gestores da universidade, chefes de centro e departamento, coordenadores de curso e professores, na tomada de decisão. Além disso, as principais partes interessadas foram entrevistadas para relatar suas dificuldades em conhecer as estatísticas sobre o abandono e validar as premissas inicialmente levantadas neste trabalho. Os relatórios foram avaliados por essas partes interessadas e resultou em percepções positivas de utilização. Uma segunda intervenção, agora com os estudantes, foi conduzida em parceria com o ProEstudo, um programa composto por profissionais da Psicologia da própria universidade. A parceria permitiu aperfeiçoar uma solução computacional, o ESPIM, capaz de realizar intervenções remotas, possibilitando assim o desenvolvimento de modelos de intervenções para apoiar o acompanhamento dos estudantes no combate às dificuldades acadêmicas e à evasão. As intervenções remotas estão sendo utilizadas pelos profissionais do ProEstudo durante o período letivo da universidade. Os resultados desta pesquisa apontam que a exploração dos dados é fundamental para se obter informações confiáveis e visualizar o cenário da evasão na instituição. Além disso, foi possível confirmar que as intervenções conduzidas fornecem meios suficientes para auxiliar os gestores na tomada de decisão e apoiar os profissionais na realização dos acompanhamentos com os estudantes, podendo assim, resultar na redução da evasão |
id |
USP_717cb9479feb5fbd5544f6d8c57d00c3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21092022-094249 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São CarlosCollege Dropout and Intervention Strategies for Student Retention: A Case Study at the Federal University of São CarlosAprendizado de MáquinaCase studyDigital reportsEstudo de CasoEvasão escolarIntervençõesInterventionsMachine learningRelatórios digitaisSistema ESPIMUniversity dropoutA evasão escolar representa uma preocupação para as instituições de ensino, sobretudo de ensino superior, e interfere diretamente na gestão e nos resultados acadêmicos das instituições, podendo muitas vezes estar relacionada diretamente a problemas sociais. A literatura aponta que a análise desse fenômeno é um fator positivo para o desenvolvimento de programas de combate ao abandono escolar, além do planejamento de ações intervencionistas e acompanhamento acadêmico. Outros estudos apontam resultados positivos na utilização de técnicas de Aprendizado de Máquina para a identificação prévia de estudantes em vias de evadir, isso com base na exploração dos dados dos sistemas acadêmicos. Apesar de haver estudos com Aprendizado de Máquina, não foram encontrados registros de trabalhos focados em desenvolver estratégias de intervenção apoiadas pela visualização de dados acadêmicos. Este trabalho buscou entender o panorama geral de uma universidade pública brasileira, a UFSCar, utilizando a exploração e classificação de dados acadêmicos por meio de técnicas de Aprendizado de Máquina. A análise dos dados permitiu obter um panorama geral dos dados de evasão da universidade e viabilizou a elaboração de relatórios digitais com informações e estatísticas para auxiliar os gestores da universidade, chefes de centro e departamento, coordenadores de curso e professores, na tomada de decisão. Além disso, as principais partes interessadas foram entrevistadas para relatar suas dificuldades em conhecer as estatísticas sobre o abandono e validar as premissas inicialmente levantadas neste trabalho. Os relatórios foram avaliados por essas partes interessadas e resultou em percepções positivas de utilização. Uma segunda intervenção, agora com os estudantes, foi conduzida em parceria com o ProEstudo, um programa composto por profissionais da Psicologia da própria universidade. A parceria permitiu aperfeiçoar uma solução computacional, o ESPIM, capaz de realizar intervenções remotas, possibilitando assim o desenvolvimento de modelos de intervenções para apoiar o acompanhamento dos estudantes no combate às dificuldades acadêmicas e à evasão. As intervenções remotas estão sendo utilizadas pelos profissionais do ProEstudo durante o período letivo da universidade. Os resultados desta pesquisa apontam que a exploração dos dados é fundamental para se obter informações confiáveis e visualizar o cenário da evasão na instituição. Além disso, foi possível confirmar que as intervenções conduzidas fornecem meios suficientes para auxiliar os gestores na tomada de decisão e apoiar os profissionais na realização dos acompanhamentos com os estudantes, podendo assim, resultar na redução da evasãoSchool dropout is a concern for educational institutions, especially higher education, since it directly impacts management and academic results of institutions, as well as being directly related to social problems. The literature points out that analyzing this phenomenon is a positive factor for developing programs to combat dropout, in addition to planning interventional actions and academic monitoring. Studies shows positive results in the use of Machine Learning techniques for the early identification of students before they dropout, based on the exploration of data from academic systems. Although there are studies with Machine Learning, there were no records of works focused on developing intervention strategies supported by the visualization of academic data. This work aimed to understand the overview of a Brazilian public university, UFSCar, using the exploration and classification of academic data through Machine Learning techniques. The analysis of the data allowed us to obtain an overview of the universitys dropout data and made it possible to prepare digital reports with information and statistics to assist university managers, heads of centers and departments, course coordinators and teachers in decision making. In addition, the main stakeholders were interviewed to report their difficulties in knowing the statistics on dropout and to validate the premises initially raised in this work. The reports were evaluated by these stakeholders and resulted in positive perceptions of use. A second intervention was conducted with students in partnership with ProEstudo, a program composed of Psychology professionals from the university. The partnership allowed the improvement of a computational solution, ESPIM, capable of carrying out remote interventions, thus enabling the development of intervention models to support the monitoring of students to combat academic difficulties and dropout. The remote interventions are being used by ProEstudo professionals during the universitys academic period. The results of this research point out that data exploration is fundamental to obtain reliable information and visualize the dropout scenario in the institution; in addition, it was possible to confirm that the interventions carried out provide sufficient means to assist managers in decision making and support professionals in monitoring the students, which may result in reduced dropout rates.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, Kamila Rios da HoraSantos, Rodolfo Sanches Saraiva dos2022-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092022-094249/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-09-21T13:07:54Zoai:teses.usp.br:tde-21092022-094249Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-09-21T13:07:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos College Dropout and Intervention Strategies for Student Retention: A Case Study at the Federal University of São Carlos |
title |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos |
spellingShingle |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos Santos, Rodolfo Sanches Saraiva dos Aprendizado de Máquina Case study Digital reports Estudo de Caso Evasão escolar Intervenções Interventions Machine learning Relatórios digitais Sistema ESPIM University dropout |
title_short |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos |
title_full |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos |
title_fullStr |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos |
title_full_unstemmed |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos |
title_sort |
Evasão Escolar Universitária e Estratégias de Intervenções para Retenção do Estudante: Um Estudo de Caso na Universidade Federal de São Carlos |
author |
Santos, Rodolfo Sanches Saraiva dos |
author_facet |
Santos, Rodolfo Sanches Saraiva dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Kamila Rios da Hora |
dc.contributor.author.fl_str_mv |
Santos, Rodolfo Sanches Saraiva dos |
dc.subject.por.fl_str_mv |
Aprendizado de Máquina Case study Digital reports Estudo de Caso Evasão escolar Intervenções Interventions Machine learning Relatórios digitais Sistema ESPIM University dropout |
topic |
Aprendizado de Máquina Case study Digital reports Estudo de Caso Evasão escolar Intervenções Interventions Machine learning Relatórios digitais Sistema ESPIM University dropout |
description |
A evasão escolar representa uma preocupação para as instituições de ensino, sobretudo de ensino superior, e interfere diretamente na gestão e nos resultados acadêmicos das instituições, podendo muitas vezes estar relacionada diretamente a problemas sociais. A literatura aponta que a análise desse fenômeno é um fator positivo para o desenvolvimento de programas de combate ao abandono escolar, além do planejamento de ações intervencionistas e acompanhamento acadêmico. Outros estudos apontam resultados positivos na utilização de técnicas de Aprendizado de Máquina para a identificação prévia de estudantes em vias de evadir, isso com base na exploração dos dados dos sistemas acadêmicos. Apesar de haver estudos com Aprendizado de Máquina, não foram encontrados registros de trabalhos focados em desenvolver estratégias de intervenção apoiadas pela visualização de dados acadêmicos. Este trabalho buscou entender o panorama geral de uma universidade pública brasileira, a UFSCar, utilizando a exploração e classificação de dados acadêmicos por meio de técnicas de Aprendizado de Máquina. A análise dos dados permitiu obter um panorama geral dos dados de evasão da universidade e viabilizou a elaboração de relatórios digitais com informações e estatísticas para auxiliar os gestores da universidade, chefes de centro e departamento, coordenadores de curso e professores, na tomada de decisão. Além disso, as principais partes interessadas foram entrevistadas para relatar suas dificuldades em conhecer as estatísticas sobre o abandono e validar as premissas inicialmente levantadas neste trabalho. Os relatórios foram avaliados por essas partes interessadas e resultou em percepções positivas de utilização. Uma segunda intervenção, agora com os estudantes, foi conduzida em parceria com o ProEstudo, um programa composto por profissionais da Psicologia da própria universidade. A parceria permitiu aperfeiçoar uma solução computacional, o ESPIM, capaz de realizar intervenções remotas, possibilitando assim o desenvolvimento de modelos de intervenções para apoiar o acompanhamento dos estudantes no combate às dificuldades acadêmicas e à evasão. As intervenções remotas estão sendo utilizadas pelos profissionais do ProEstudo durante o período letivo da universidade. Os resultados desta pesquisa apontam que a exploração dos dados é fundamental para se obter informações confiáveis e visualizar o cenário da evasão na instituição. Além disso, foi possível confirmar que as intervenções conduzidas fornecem meios suficientes para auxiliar os gestores na tomada de decisão e apoiar os profissionais na realização dos acompanhamentos com os estudantes, podendo assim, resultar na redução da evasão |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092022-094249/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092022-094249/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257250765209600 |