Designing convolutional neural network architectures based on dynamical system concepts

Detalhes bibliográficos
Autor(a) principal: Ferreira, Martha Dais
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042019-082539/
Resumo: Technology advances have motivated the production and storage of large amounts of data and, consequently, the need for processing them out in order to support decision making. In this context, Deep Learning (DL) has emerged and provided major advances to solve complex supervised tasks through the direct manipulation of raw data content, such as images, audios and videos. Convolutional Neural Networks (CNN) are among the state-of-the-art strategies in DL, confirming relevant performance results in tasks of different domains. Currently, the design of CNN architectures is one of the major challenges involved in the practical use of DL, since it requires considerable knowledge about the application domain, linear and nonlinear algebraic transformations. Architectures are either manually designed, using empirical procedures, or with the support of evolutionary algorithms, an option that excessively consumes computational resources while analyzing candidate solutions. In addition to the architecture design, the possibility of overfitting has attracting the scientific community to study the effect of such complex models and whether they produce some memorization effect on training sets. Those two main challenges motivated this PhD thesis which brings up a proposal to support the automatic design of CNN architectures based on Dynamical System (DS) concepts. Initially, CNN architectures were algebraically formulated, allowing to take conclusions on the relationships of CNN input data organizations and spatial immersions from DS, leading to the development of an immersion tool called Image-based False Nearest Neighbors (IFNN). IFNN estimates the convolutional mask sizes and helps in the process of finding the adequate number of convolutional units per CNN layer by taking advantage of well-known effects caused by the reconstruction of phase spaces. This tool is based on the False-Nearest Neighbors (FNN) method, typically used to estimate the minimal embedding dimension to represent recurrence patterns of time series. Experiments confirm that architectures designed with the support of IFNN mostly usually produce results similar to deeper (and thus more complex) architectures. Based on those experiments, we concluded that IFNN supports the design of simpler, shallower (in the sense of depth) but yet efficient CNN architectures, which are faster to train and provide tighter learning guarantees according to the Statistical Learning Theory (SLT) thus requiring smaller training samples. Finally, the CNN architectures after IFNN were analyzed based on their Shattering coefficients in attempt to verify their relative complexities, and most essentially the cardinalities of their spaces of admissible functions, a.k.a. biases.
id USP_733a72a829ae8bcf624f41eae066b6af
oai_identifier_str oai:teses.usp.br:tde-26042019-082539
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Designing convolutional neural network architectures based on dynamical system conceptsProjeto de arquiteturas de redes neurais artificiais convolucionais com o apoio de conceitos oriundos da área de sistemas dinâmicosAprendizado profundoConvolutional neural networksDeep learningDynamical systemsFalsos vizinhos mais próximos em imagensImage-based False nearest neighborsRedes neurais convolucionaisSistemas dinâmicosStatistical learning theoryTeoria do aprendizado estatísticoTechnology advances have motivated the production and storage of large amounts of data and, consequently, the need for processing them out in order to support decision making. In this context, Deep Learning (DL) has emerged and provided major advances to solve complex supervised tasks through the direct manipulation of raw data content, such as images, audios and videos. Convolutional Neural Networks (CNN) are among the state-of-the-art strategies in DL, confirming relevant performance results in tasks of different domains. Currently, the design of CNN architectures is one of the major challenges involved in the practical use of DL, since it requires considerable knowledge about the application domain, linear and nonlinear algebraic transformations. Architectures are either manually designed, using empirical procedures, or with the support of evolutionary algorithms, an option that excessively consumes computational resources while analyzing candidate solutions. In addition to the architecture design, the possibility of overfitting has attracting the scientific community to study the effect of such complex models and whether they produce some memorization effect on training sets. Those two main challenges motivated this PhD thesis which brings up a proposal to support the automatic design of CNN architectures based on Dynamical System (DS) concepts. Initially, CNN architectures were algebraically formulated, allowing to take conclusions on the relationships of CNN input data organizations and spatial immersions from DS, leading to the development of an immersion tool called Image-based False Nearest Neighbors (IFNN). IFNN estimates the convolutional mask sizes and helps in the process of finding the adequate number of convolutional units per CNN layer by taking advantage of well-known effects caused by the reconstruction of phase spaces. This tool is based on the False-Nearest Neighbors (FNN) method, typically used to estimate the minimal embedding dimension to represent recurrence patterns of time series. Experiments confirm that architectures designed with the support of IFNN mostly usually produce results similar to deeper (and thus more complex) architectures. Based on those experiments, we concluded that IFNN supports the design of simpler, shallower (in the sense of depth) but yet efficient CNN architectures, which are faster to train and provide tighter learning guarantees according to the Statistical Learning Theory (SLT) thus requiring smaller training samples. Finally, the CNN architectures after IFNN were analyzed based on their Shattering coefficients in attempt to verify their relative complexities, and most essentially the cardinalities of their spaces of admissible functions, a.k.a. biases.Avanços tecnológicos têm permitido e motivado a produção e o armazenamento de grandes volumes de dados e, consequentemente, a necessidade de processamento a fim de obter informações que apoiem processos de tomada de decisão. Neste contexto, a área de Aprendizado Profundo (DL) tem apoiado a resolução de problemas complexos por meio da extração de características implícitas em conteúdos, tais como de imagens, áudios e vídeos, para produzir bons classificadores e regressores. Redes Neurais Convolucionais (CNN) estão entre as estratégias consideradas estado da arte em DL, apresentando ótimo desempenho em tarefas de diferentes domínios. O projeto de arquiteturas de CNNs é um dos maiores desafios envolvidos no uso dessa tecnologia, pois requer considerável conhecimento sobre o domínio da aplicação, bem como sobre transformações algébricas lineares e não-lineares. Atualmente, esses projetos são realizados de forma manual, contando portanto com procedimentos empíricos, ou por meio de algoritmos evolutivos que analisam diferentes arquiteturas candidatas, opção que excessivamente consome recursos computacionais. Em meio ao projeto, surge ainda outra questão que tem atraído a comunidade científica, ela se refere ao uso de arquiteturas profundas e suas relações com overfitting, o qual produz memorização dos exemplos de treinamento e, portanto, degradação no processo de aprendizado. Esses dois principais desafios motivaram esta tese de doutorado a trazer uma discussão e uma proposta de abordagem para auxiliar no projeto de arquiteturas de CNNs, bem como permitir a compreensão algébrica de suas operações. Inicialmente, as arquiteturas de CNN foram algebricamente formuladas, o que permitiu concluir que suas relações de imersão espaciais são similares às empregadas pela área de Sistemas Dinâmicos (DS), levando ao desenvolvimento de uma ferramenta de imersão denominada Falsos Vizinhos mais Próximos em Imagem (IFNN). IFNN estima o tamanho das máscaras convolucionais e auxilia na estimação do números de unidades para cada camada de uma arquitetura CNN, a partir do efeito causado pela reconstrução de espaços fase. Essa ferramenta é motivada por outra denominada Falsos Vizinhos mais Próximos (FNN), a qual estima a dimensão de incorporação mínima necessária para representar padrões recorrentes em dados com dependências temporais. Experimentos confirmam que as arquiteturas projetadas com o auxílio da IFNN produziram resultados similares aos reportados por arquiteturas profundas e muito mais complexas. Com base nesses experimentos, conclui-se que a IFNN auxilia no projeto de arquiteturas mais simples, rasas (no sentido de menor profundidade) e eficientes, as quais são mais rapidamente treinadas e fornecem garantias mais justas de aprendizado (necessitam de menor tamanho para as amostras de treinamento). Por fim, as arquiteturas obtidas com o apoio da IFNN foram analisadas com base em seus coeficientes de Shattering a fim de verificar suas complexidades relativas, essencialmente a cardinalidade de seus viéses.Biblioteca Digitais de Teses e Dissertações da USPMello, Rodrigo Fernandes deFerreira, Martha Dais2019-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042019-082539/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T23:48:42Zoai:teses.usp.br:tde-26042019-082539Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T23:48:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Designing convolutional neural network architectures based on dynamical system concepts
Projeto de arquiteturas de redes neurais artificiais convolucionais com o apoio de conceitos oriundos da área de sistemas dinâmicos
title Designing convolutional neural network architectures based on dynamical system concepts
spellingShingle Designing convolutional neural network architectures based on dynamical system concepts
Ferreira, Martha Dais
Aprendizado profundo
Convolutional neural networks
Deep learning
Dynamical systems
Falsos vizinhos mais próximos em imagens
Image-based False nearest neighbors
Redes neurais convolucionais
Sistemas dinâmicos
Statistical learning theory
Teoria do aprendizado estatístico
title_short Designing convolutional neural network architectures based on dynamical system concepts
title_full Designing convolutional neural network architectures based on dynamical system concepts
title_fullStr Designing convolutional neural network architectures based on dynamical system concepts
title_full_unstemmed Designing convolutional neural network architectures based on dynamical system concepts
title_sort Designing convolutional neural network architectures based on dynamical system concepts
author Ferreira, Martha Dais
author_facet Ferreira, Martha Dais
author_role author
dc.contributor.none.fl_str_mv Mello, Rodrigo Fernandes de
dc.contributor.author.fl_str_mv Ferreira, Martha Dais
dc.subject.por.fl_str_mv Aprendizado profundo
Convolutional neural networks
Deep learning
Dynamical systems
Falsos vizinhos mais próximos em imagens
Image-based False nearest neighbors
Redes neurais convolucionais
Sistemas dinâmicos
Statistical learning theory
Teoria do aprendizado estatístico
topic Aprendizado profundo
Convolutional neural networks
Deep learning
Dynamical systems
Falsos vizinhos mais próximos em imagens
Image-based False nearest neighbors
Redes neurais convolucionais
Sistemas dinâmicos
Statistical learning theory
Teoria do aprendizado estatístico
description Technology advances have motivated the production and storage of large amounts of data and, consequently, the need for processing them out in order to support decision making. In this context, Deep Learning (DL) has emerged and provided major advances to solve complex supervised tasks through the direct manipulation of raw data content, such as images, audios and videos. Convolutional Neural Networks (CNN) are among the state-of-the-art strategies in DL, confirming relevant performance results in tasks of different domains. Currently, the design of CNN architectures is one of the major challenges involved in the practical use of DL, since it requires considerable knowledge about the application domain, linear and nonlinear algebraic transformations. Architectures are either manually designed, using empirical procedures, or with the support of evolutionary algorithms, an option that excessively consumes computational resources while analyzing candidate solutions. In addition to the architecture design, the possibility of overfitting has attracting the scientific community to study the effect of such complex models and whether they produce some memorization effect on training sets. Those two main challenges motivated this PhD thesis which brings up a proposal to support the automatic design of CNN architectures based on Dynamical System (DS) concepts. Initially, CNN architectures were algebraically formulated, allowing to take conclusions on the relationships of CNN input data organizations and spatial immersions from DS, leading to the development of an immersion tool called Image-based False Nearest Neighbors (IFNN). IFNN estimates the convolutional mask sizes and helps in the process of finding the adequate number of convolutional units per CNN layer by taking advantage of well-known effects caused by the reconstruction of phase spaces. This tool is based on the False-Nearest Neighbors (FNN) method, typically used to estimate the minimal embedding dimension to represent recurrence patterns of time series. Experiments confirm that architectures designed with the support of IFNN mostly usually produce results similar to deeper (and thus more complex) architectures. Based on those experiments, we concluded that IFNN supports the design of simpler, shallower (in the sense of depth) but yet efficient CNN architectures, which are faster to train and provide tighter learning guarantees according to the Statistical Learning Theory (SLT) thus requiring smaller training samples. Finally, the CNN architectures after IFNN were analyzed based on their Shattering coefficients in attempt to verify their relative complexities, and most essentially the cardinalities of their spaces of admissible functions, a.k.a. biases.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042019-082539/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042019-082539/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257357057261568