Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method

Detalhes bibliográficos
Autor(a) principal: Miotti, Marcos Paulo
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-22112021-093755/
Resumo: Thermodynamics of non-uniform systems has always been a challenging topic in the physical sciences. In the field of quantum gases, that subject is mainly studied with ultracold samples trapped in a harmonic potential, the first kind of confinement ever made to atomic fluids.1 Nascimbène et al.2 have already described a method to measure locally the equation of state and heat capacity of a harmonically trapped quantum gas. Nonetheless, local measurements cannot provide the volume-dependent susceptibilities of an inhomogeneous system, namely the thermal expansion and compressibility, meaning that the thermodynamic description of harmonically trapped gases is still incomplete. To solve that issue, Romero and Bagnato3, 4 proposed canonical variables of work for a gas in a harmonic trap, which work like pressure and volume for a gas in a vessel and allow global measurements on the system. Therefore, we describe here our methodology to measure the thermodynamic susceptibilities of a harmonically trapped gas around the Bose-Einstein transition using the Romero-Bagnato formalism. Our experiments were divided in different phases, each having the harmonic trap with unique frequencies, related to the formalism´s extensive variable. In each phase, we prepared individual samples of rubidium-87 gas in the trap and imaged them using the time-of-flight technique. Next, we fitted our images with the bimodal model and found the in situ density profiles of the samples with the standard regression procedures. Then, we determined the phase´s equation of state as a function of temperature and number of atoms. For the thermodynamic analysis, we used an empirical model that we developed to fit the equation-of-state curves, allowing us to represent our data in terms of mathematical coefficients. In that way, we found the curves of internal energy, heat capacity, thermal expansion and compressibility, thus achieving a full thermodynamic description of a harmonically trapped gas. Our method and its results are unprecedented in the literature and might contribute to the further understanding of non-uniform systems, as well as the future development of quantum thermal engines.
id USP_7352df204558ebd118fd916fff784e50
oai_identifier_str oai:teses.usp.br:tde-22112021-093755
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable methodTermodinâmica técnica de um gás inomogênio ao redor da transição de Bose-Einstein usando o método das variáveis globaisBose-Einstein condensationCondensação de Bose-EinsteinGases quânticosQuantum gasesTermodinâmicaThermodynamicsThermodynamics of non-uniform systems has always been a challenging topic in the physical sciences. In the field of quantum gases, that subject is mainly studied with ultracold samples trapped in a harmonic potential, the first kind of confinement ever made to atomic fluids.1 Nascimbène et al.2 have already described a method to measure locally the equation of state and heat capacity of a harmonically trapped quantum gas. Nonetheless, local measurements cannot provide the volume-dependent susceptibilities of an inhomogeneous system, namely the thermal expansion and compressibility, meaning that the thermodynamic description of harmonically trapped gases is still incomplete. To solve that issue, Romero and Bagnato3, 4 proposed canonical variables of work for a gas in a harmonic trap, which work like pressure and volume for a gas in a vessel and allow global measurements on the system. Therefore, we describe here our methodology to measure the thermodynamic susceptibilities of a harmonically trapped gas around the Bose-Einstein transition using the Romero-Bagnato formalism. Our experiments were divided in different phases, each having the harmonic trap with unique frequencies, related to the formalism´s extensive variable. In each phase, we prepared individual samples of rubidium-87 gas in the trap and imaged them using the time-of-flight technique. Next, we fitted our images with the bimodal model and found the in situ density profiles of the samples with the standard regression procedures. Then, we determined the phase´s equation of state as a function of temperature and number of atoms. For the thermodynamic analysis, we used an empirical model that we developed to fit the equation-of-state curves, allowing us to represent our data in terms of mathematical coefficients. In that way, we found the curves of internal energy, heat capacity, thermal expansion and compressibility, thus achieving a full thermodynamic description of a harmonically trapped gas. Our method and its results are unprecedented in the literature and might contribute to the further understanding of non-uniform systems, as well as the future development of quantum thermal engines.A termodinâmica de sistemas não-uniformes sempre foi um tópico desafiador nas ciências físicas. No campo de gases quânticos, esse assunto é principalmente estudado com amostras ultrafrias aprisionadas em um potencial harmônico, o primeiro tipo de confinamento feito para fluidos atômicos.1 Nascimbène et al.2 já descreveram um método para medir localmente a equação de estado e a capacidade calorífica de um gás quântico aprisionado harmonicamente. Todavia, medidas locais não conseguem prover as susceptibilidades dependentes do volume de um sistema inomogêneo, nomeadamente a expansão térmica e a compressibilidade, significando que a descrição termodinâmica de gases aprisionados harmonicamente está ainda incompleta. Para resolver esse empecilho, Romero e Bagnato3, 4 propuseram variáveis canônicas de trabalho para um gás em uma armadilha harmônica, que funcionam como pressão e volume para um gás em um recipiente e permitem medidas globais sobre o sistema. Portanto, descrevemos aqui nossa metodologia para medir as susceptibilidades termodinâmicas de um gás aprisionado harmonicamente ao redor da transição de Bose-Einstein usando o formalismo de Romero-Bagnato. Nossos experimentos foram divididos em diferentes fases, cada uma tendo uma armadilha harmômica com frequências únicas, relacionadas à variável extensiva do formalismo. Em cada fase, preparamos amostras individuais de gás rubídio-87 na armadilha e capturamos as imagens delas com a técnica de tempo de voo. Depois, ajustamos a função do modelo bimodal às imagens e encontramos os perfis de densidade in situ das amostras com os procedimentos normais de regressão. Então, determinamos a equação de estado da fase experimental como função da temperatura e do número atômico. Para a análise termodinâmica, usamos um modelo empírico que desenvolvemos para ajustar as curvas de equação de estado, permitindo-nos representar nossos dados em termos de coeficientes matemáticos. Dessa forma, encontramos as curvas da energia interna, da capacidade calorífica, da expansão térmica e da compressibilidade, assim obtendo uma descrição termodinâmica completa de uma gás aprisionado harmonicamente. Nosso método e seus resultados são imprecedentes na literatura e devem contribuir para o entendimento subsequente de sistemas não-uniformes, assim como para o futuro desenvolvimento de máquinas térmicas quânticas.Biblioteca Digitais de Teses e Dissertações da USPBagnato, Vanderlei SalvadorMiotti, Marcos Paulo2021-10-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-22112021-093755/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-23T13:09:02Zoai:teses.usp.br:tde-22112021-093755Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-23T13:09:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
Termodinâmica técnica de um gás inomogênio ao redor da transição de Bose-Einstein usando o método das variáveis globais
title Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
spellingShingle Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
Miotti, Marcos Paulo
Bose-Einstein condensation
Condensação de Bose-Einstein
Gases quânticos
Quantum gases
Termodinâmica
Thermodynamics
title_short Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
title_full Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
title_fullStr Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
title_full_unstemmed Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
title_sort Technical thermodynamics of an inhomogeneous gas around the Bose-Einstein transition using the global-variable method
author Miotti, Marcos Paulo
author_facet Miotti, Marcos Paulo
author_role author
dc.contributor.none.fl_str_mv Bagnato, Vanderlei Salvador
dc.contributor.author.fl_str_mv Miotti, Marcos Paulo
dc.subject.por.fl_str_mv Bose-Einstein condensation
Condensação de Bose-Einstein
Gases quânticos
Quantum gases
Termodinâmica
Thermodynamics
topic Bose-Einstein condensation
Condensação de Bose-Einstein
Gases quânticos
Quantum gases
Termodinâmica
Thermodynamics
description Thermodynamics of non-uniform systems has always been a challenging topic in the physical sciences. In the field of quantum gases, that subject is mainly studied with ultracold samples trapped in a harmonic potential, the first kind of confinement ever made to atomic fluids.1 Nascimbène et al.2 have already described a method to measure locally the equation of state and heat capacity of a harmonically trapped quantum gas. Nonetheless, local measurements cannot provide the volume-dependent susceptibilities of an inhomogeneous system, namely the thermal expansion and compressibility, meaning that the thermodynamic description of harmonically trapped gases is still incomplete. To solve that issue, Romero and Bagnato3, 4 proposed canonical variables of work for a gas in a harmonic trap, which work like pressure and volume for a gas in a vessel and allow global measurements on the system. Therefore, we describe here our methodology to measure the thermodynamic susceptibilities of a harmonically trapped gas around the Bose-Einstein transition using the Romero-Bagnato formalism. Our experiments were divided in different phases, each having the harmonic trap with unique frequencies, related to the formalism´s extensive variable. In each phase, we prepared individual samples of rubidium-87 gas in the trap and imaged them using the time-of-flight technique. Next, we fitted our images with the bimodal model and found the in situ density profiles of the samples with the standard regression procedures. Then, we determined the phase´s equation of state as a function of temperature and number of atoms. For the thermodynamic analysis, we used an empirical model that we developed to fit the equation-of-state curves, allowing us to represent our data in terms of mathematical coefficients. In that way, we found the curves of internal energy, heat capacity, thermal expansion and compressibility, thus achieving a full thermodynamic description of a harmonically trapped gas. Our method and its results are unprecedented in the literature and might contribute to the further understanding of non-uniform systems, as well as the future development of quantum thermal engines.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-22112021-093755/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-22112021-093755/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826318964520648704