Solução numérica de equações diferenciais via integração de transformada de Laplace

Detalhes bibliográficos
Autor(a) principal: Mendoza, Ana Cecilia Rojas
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-07012021-183508/
Resumo: Problemas oscilatórios modelados por equações diferenciais são chamados rígidos quando os autovalores variam (simultaneamente) em diferentes ordens de grandeza: valores elevados causam oscilações rápidas, enquanto valores pequenos causam oscilações mais lentas. O tamanho do passo de tempo dos métodos numéricos usados para integrar esses modelos geralmente é restrito pelos requisitos de estabilidade. Um método explícito precisará de um passo de tempo relativamente pequeno, enquanto que, com um método implícito é possível usar passos de tempo maiores, mas geralmente afetando a precisão da solução. O objetivo deste trabalho é obter um método de integração numérica que nos permita usar passos de tempo maiores, mantendo a estabilidade e a precisão. Um método alternativo para resolver equações diferenciais ordinárias baseado na Transformada Inversa de Laplace é desenvolvido. O esquema numérico é definido aplicando as propriedades da Transformada de Laplace e fazendo algumas modificações no contorno da integração. Analisamos o método para diferentes casos, incluindo modelos aplicados, a fim de estabelecer uma relação entre os parâmetros de integração e obter condições ideais para manter a estabilidade, a precisão e a capacidade de usar passos de tempo maiores. Analisamos também, sob certas condições, a capacidade do método de atuar como um filtro de componentes de alta frequência. A comparação desse método com o Método de Runge Kutta de quarta ordem, para diferentes casos, revela que é possível utilizar passos de tempo muito maiores sem afetar a estabilidade e a precisão. Além disso, ao contrário do Método de Runge Kutta, no método de integração de Laplace cada avaliação é independente. Isso implica que os cálculos podem ser executados em paralelo, o que poderia reduzir o tempo de computação.
id USP_73dc026f7ef396eba99406dd38e5d052
oai_identifier_str oai:teses.usp.br:tde-07012021-183508
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Solução numérica de equações diferenciais via integração de transformada de LaplaceNumerical solution of ordinary diferential equations using Laplace transform integrationContorno de integraçãoFilteringFiltragemIntegração no tempoIntegration contourInverse Laplace transformLaplace transformTime integrationTransformada de LaplaceTransformada inversa de LaplaceProblemas oscilatórios modelados por equações diferenciais são chamados rígidos quando os autovalores variam (simultaneamente) em diferentes ordens de grandeza: valores elevados causam oscilações rápidas, enquanto valores pequenos causam oscilações mais lentas. O tamanho do passo de tempo dos métodos numéricos usados para integrar esses modelos geralmente é restrito pelos requisitos de estabilidade. Um método explícito precisará de um passo de tempo relativamente pequeno, enquanto que, com um método implícito é possível usar passos de tempo maiores, mas geralmente afetando a precisão da solução. O objetivo deste trabalho é obter um método de integração numérica que nos permita usar passos de tempo maiores, mantendo a estabilidade e a precisão. Um método alternativo para resolver equações diferenciais ordinárias baseado na Transformada Inversa de Laplace é desenvolvido. O esquema numérico é definido aplicando as propriedades da Transformada de Laplace e fazendo algumas modificações no contorno da integração. Analisamos o método para diferentes casos, incluindo modelos aplicados, a fim de estabelecer uma relação entre os parâmetros de integração e obter condições ideais para manter a estabilidade, a precisão e a capacidade de usar passos de tempo maiores. Analisamos também, sob certas condições, a capacidade do método de atuar como um filtro de componentes de alta frequência. A comparação desse método com o Método de Runge Kutta de quarta ordem, para diferentes casos, revela que é possível utilizar passos de tempo muito maiores sem afetar a estabilidade e a precisão. Além disso, ao contrário do Método de Runge Kutta, no método de integração de Laplace cada avaliação é independente. Isso implica que os cálculos podem ser executados em paralelo, o que poderia reduzir o tempo de computação.Oscillatory problems modeled by differential equations are called stiff when the eigenvalues vary (simultaneously) in different orders of magnitude: high values cause rapid oscillations while small values cause slower oscillations. The time step size of the numerical methods used to integrate such models is usually restricted by stability requirements. An explicit method will need a relatively small time step, whereas with an implicit method it is possible to take larger time steps,but usually impacting the accuracy of the solution. The aim of this work is to obtain a numerical integration method that allows us to use larger time steps maintaining stability and precision. An alternative method to solve dierential equations based on the Inverse Laplace Transform is developed. The numerical scheme is dened, taking advantage of the properties of the Laplace Transform and making some modifications on the integration contour. We analyze the method for different cases, including applied models, in order to establish a relationship between the integration parameters and to obtain optimal conditions to maintain stability, precision and the ability to use larger time steps. In addition, under certain conditions, we also analyze the ability of the method to act as a high-frequency component filter. The comparison of this method with the Fourth Order Runge Kutta Method, for different cases, reveals that it is possible to take much larger time steps without affecting stability and accuracy. Moreover, unlike the Runge Kutta Method, in the Laplace Integration Method each evaluation is independent of each other. This implies that the calculations can be executed in parallel, which could reduce the computation time.Biblioteca Digitais de Teses e Dissertações da USPPeixoto, Pedro da SilvaMendoza, Ana Cecilia Rojas2020-03-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45132/tde-07012021-183508/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-01-20T22:56:02Zoai:teses.usp.br:tde-07012021-183508Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-01-20T22:56:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Solução numérica de equações diferenciais via integração de transformada de Laplace
Numerical solution of ordinary diferential equations using Laplace transform integration
title Solução numérica de equações diferenciais via integração de transformada de Laplace
spellingShingle Solução numérica de equações diferenciais via integração de transformada de Laplace
Mendoza, Ana Cecilia Rojas
Contorno de integração
Filtering
Filtragem
Integração no tempo
Integration contour
Inverse Laplace transform
Laplace transform
Time integration
Transformada de Laplace
Transformada inversa de Laplace
title_short Solução numérica de equações diferenciais via integração de transformada de Laplace
title_full Solução numérica de equações diferenciais via integração de transformada de Laplace
title_fullStr Solução numérica de equações diferenciais via integração de transformada de Laplace
title_full_unstemmed Solução numérica de equações diferenciais via integração de transformada de Laplace
title_sort Solução numérica de equações diferenciais via integração de transformada de Laplace
author Mendoza, Ana Cecilia Rojas
author_facet Mendoza, Ana Cecilia Rojas
author_role author
dc.contributor.none.fl_str_mv Peixoto, Pedro da Silva
dc.contributor.author.fl_str_mv Mendoza, Ana Cecilia Rojas
dc.subject.por.fl_str_mv Contorno de integração
Filtering
Filtragem
Integração no tempo
Integration contour
Inverse Laplace transform
Laplace transform
Time integration
Transformada de Laplace
Transformada inversa de Laplace
topic Contorno de integração
Filtering
Filtragem
Integração no tempo
Integration contour
Inverse Laplace transform
Laplace transform
Time integration
Transformada de Laplace
Transformada inversa de Laplace
description Problemas oscilatórios modelados por equações diferenciais são chamados rígidos quando os autovalores variam (simultaneamente) em diferentes ordens de grandeza: valores elevados causam oscilações rápidas, enquanto valores pequenos causam oscilações mais lentas. O tamanho do passo de tempo dos métodos numéricos usados para integrar esses modelos geralmente é restrito pelos requisitos de estabilidade. Um método explícito precisará de um passo de tempo relativamente pequeno, enquanto que, com um método implícito é possível usar passos de tempo maiores, mas geralmente afetando a precisão da solução. O objetivo deste trabalho é obter um método de integração numérica que nos permita usar passos de tempo maiores, mantendo a estabilidade e a precisão. Um método alternativo para resolver equações diferenciais ordinárias baseado na Transformada Inversa de Laplace é desenvolvido. O esquema numérico é definido aplicando as propriedades da Transformada de Laplace e fazendo algumas modificações no contorno da integração. Analisamos o método para diferentes casos, incluindo modelos aplicados, a fim de estabelecer uma relação entre os parâmetros de integração e obter condições ideais para manter a estabilidade, a precisão e a capacidade de usar passos de tempo maiores. Analisamos também, sob certas condições, a capacidade do método de atuar como um filtro de componentes de alta frequência. A comparação desse método com o Método de Runge Kutta de quarta ordem, para diferentes casos, revela que é possível utilizar passos de tempo muito maiores sem afetar a estabilidade e a precisão. Além disso, ao contrário do Método de Runge Kutta, no método de integração de Laplace cada avaliação é independente. Isso implica que os cálculos podem ser executados em paralelo, o que poderia reduzir o tempo de computação.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45132/tde-07012021-183508/
url https://www.teses.usp.br/teses/disponiveis/45/45132/tde-07012021-183508/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256738275786752