Métodos auto-organizáveis para segmentação de imagens

Detalhes bibliográficos
Autor(a) principal: Oliveira, Patrícia Rufino
Data de Publicação: 2004
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-104221/
Resumo: Segmentação de imagens é um dos problemas mais investigados na área de computação visual. A complexidade desse problema varia de acordo com o tipo de aplicação. Em geral, o objetivo é dividir a imagem em regiões que apresentem propriedades similares. No presente trabalho, métodos auto-organizáveis para classificação não supervisionada e agrupamento de padrões são utilizados em tarefas de segmentação. O primeiro modelo refere-se à rede neural Fuzzy ART e o segundo é o Modelo de Misturas ICA (ICAMM) que faz uso da técnica ICA (Análise de Componentes Independentes) para descrever os dados em cada classe. Além da avaliação de desempenho dos modelos auto-organizáveis utilizados, foram propostas melhorias nos resultados de segmentação por meio da incorporação de técnicas de préprocessamento de imagens, que sejam capazes de tratar questões referentes à presença de ruídos, suavização de imagens e realce de bordas, de modo que as imagens se tornem mais adequadas ao processo de segmentação, tornando-o mais eficiente. Com esse objetivo, foi proposta uma metodologia para pré-processamento de imagens, que combina o método Sparse Code Shrinkage, para redução de ruídos e suavização da imagem, e o detector de bordas de Sobel, que tem a função de restaurar as bordas que foram borradas pelo processo de suavização. Outra contribuição original deste trabalho refere-se ao desenvolvimento do método EICAMM, que surgiu por meio da proposta de melhorias incorporadas ao modelo ICAMM, levando em consideração algumas limitações do método original e análises de como este poderia se tornar mais eficiente. Finalmente, unificando as duas principais contribuições originais desta tese, o método EICAMM foi utilizado na segmentação de imagens nas suas versões originais e pré-processadas pela metodologia proposta neste trabalho, tendo apresentado resultados de segmentação satisfatórios.
id USP_747f6c3460a4363e172c4fa09497d646
oai_identifier_str oai:teses.usp.br:tde-20082015-104221
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Métodos auto-organizáveis para segmentação de imagensSelf-organizing methods for image segmentationNão disponívelNot availableSegmentação de imagens é um dos problemas mais investigados na área de computação visual. A complexidade desse problema varia de acordo com o tipo de aplicação. Em geral, o objetivo é dividir a imagem em regiões que apresentem propriedades similares. No presente trabalho, métodos auto-organizáveis para classificação não supervisionada e agrupamento de padrões são utilizados em tarefas de segmentação. O primeiro modelo refere-se à rede neural Fuzzy ART e o segundo é o Modelo de Misturas ICA (ICAMM) que faz uso da técnica ICA (Análise de Componentes Independentes) para descrever os dados em cada classe. Além da avaliação de desempenho dos modelos auto-organizáveis utilizados, foram propostas melhorias nos resultados de segmentação por meio da incorporação de técnicas de préprocessamento de imagens, que sejam capazes de tratar questões referentes à presença de ruídos, suavização de imagens e realce de bordas, de modo que as imagens se tornem mais adequadas ao processo de segmentação, tornando-o mais eficiente. Com esse objetivo, foi proposta uma metodologia para pré-processamento de imagens, que combina o método Sparse Code Shrinkage, para redução de ruídos e suavização da imagem, e o detector de bordas de Sobel, que tem a função de restaurar as bordas que foram borradas pelo processo de suavização. Outra contribuição original deste trabalho refere-se ao desenvolvimento do método EICAMM, que surgiu por meio da proposta de melhorias incorporadas ao modelo ICAMM, levando em consideração algumas limitações do método original e análises de como este poderia se tornar mais eficiente. Finalmente, unificando as duas principais contribuições originais desta tese, o método EICAMM foi utilizado na segmentação de imagens nas suas versões originais e pré-processadas pela metodologia proposta neste trabalho, tendo apresentado resultados de segmentação satisfatórios.Image segmentation is one of rnost investigated problems in computer vision. Its complexity can vary according to the kind of application. In general, the goal is to divide an image into regions with similar properties. In tliis work, self-organizing methods for unsupervised classification and clustering are applied in image segmentation tasks. The first self-organizing model is the Fuzzy ART neural network and the other one is the ICA Mixture Model (ICAMM), which uses ICA method to desenhe data in each class. Beside the performance evaluation regarding the considered methods, some improvements on the segmentation results obtained by these techniques were proposed by incorporating some image preprocessing methods. Sueli methods were able to handle some questions regarding to presence of noise, image smoothing and edge enhancement, in a way that makes an image more suited to be processed by an image segmentation technique, which can become more efficient. Aiming this, a preprocessing methodology was proposed in this work that combines Sparse Code Shrinkage method for image denoise to the Sobel Edge Detector, which is applied to recover edges that were blurred by an excessive smoothing. Another original contribution of this work refers to the development of EICAMM, which was built by proposing some modifications on ICAMM, considering some limitations on the original method and analysis on liow it should be modified to become more efficient. Finally, unifying the two main contributions of this thesis, the EICAMM method was applied for segmenting some images in these original and preprocessed versions, obtained by the proposed preprocessing methodology. Such systern lias showed satisfactory image segmentation results.Biblioteca Digitais de Teses e Dissertações da USPRomero, Roseli Aparecida FrancelinOliveira, Patrícia Rufino2004-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-104221/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-20082015-104221Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Métodos auto-organizáveis para segmentação de imagens
Self-organizing methods for image segmentation
title Métodos auto-organizáveis para segmentação de imagens
spellingShingle Métodos auto-organizáveis para segmentação de imagens
Oliveira, Patrícia Rufino
Não disponível
Not available
title_short Métodos auto-organizáveis para segmentação de imagens
title_full Métodos auto-organizáveis para segmentação de imagens
title_fullStr Métodos auto-organizáveis para segmentação de imagens
title_full_unstemmed Métodos auto-organizáveis para segmentação de imagens
title_sort Métodos auto-organizáveis para segmentação de imagens
author Oliveira, Patrícia Rufino
author_facet Oliveira, Patrícia Rufino
author_role author
dc.contributor.none.fl_str_mv Romero, Roseli Aparecida Francelin
dc.contributor.author.fl_str_mv Oliveira, Patrícia Rufino
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Segmentação de imagens é um dos problemas mais investigados na área de computação visual. A complexidade desse problema varia de acordo com o tipo de aplicação. Em geral, o objetivo é dividir a imagem em regiões que apresentem propriedades similares. No presente trabalho, métodos auto-organizáveis para classificação não supervisionada e agrupamento de padrões são utilizados em tarefas de segmentação. O primeiro modelo refere-se à rede neural Fuzzy ART e o segundo é o Modelo de Misturas ICA (ICAMM) que faz uso da técnica ICA (Análise de Componentes Independentes) para descrever os dados em cada classe. Além da avaliação de desempenho dos modelos auto-organizáveis utilizados, foram propostas melhorias nos resultados de segmentação por meio da incorporação de técnicas de préprocessamento de imagens, que sejam capazes de tratar questões referentes à presença de ruídos, suavização de imagens e realce de bordas, de modo que as imagens se tornem mais adequadas ao processo de segmentação, tornando-o mais eficiente. Com esse objetivo, foi proposta uma metodologia para pré-processamento de imagens, que combina o método Sparse Code Shrinkage, para redução de ruídos e suavização da imagem, e o detector de bordas de Sobel, que tem a função de restaurar as bordas que foram borradas pelo processo de suavização. Outra contribuição original deste trabalho refere-se ao desenvolvimento do método EICAMM, que surgiu por meio da proposta de melhorias incorporadas ao modelo ICAMM, levando em consideração algumas limitações do método original e análises de como este poderia se tornar mais eficiente. Finalmente, unificando as duas principais contribuições originais desta tese, o método EICAMM foi utilizado na segmentação de imagens nas suas versões originais e pré-processadas pela metodologia proposta neste trabalho, tendo apresentado resultados de segmentação satisfatórios.
publishDate 2004
dc.date.none.fl_str_mv 2004-12-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-104221/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-104221/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257178884276224