Análise de micropadrões em imagens digitais baseada em números fuzzy

Detalhes bibliográficos
Autor(a) principal: Vieira, Raissa Tavares
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-154729/
Resumo: As imagens digitais são frequentemente corrompidas por ruídos ou distorcidas pelo processo de aquisição. A teoria dos conjuntos fuzzy e a lógica fuzzy constituem uma alternativa mais adequada para lidar com tais incertezas, em comparação com os sistemas convencionais, baseados na lógica tradicional (crisp). Este trabalho propõe uma nova metodologia para análise de micropadrões de imagens digitais baseada em números fuzzy. Um micropadrão é uma estrutura de níveis de cinza dos pixels de uma vizinhança e pode descrever o contexto espacial da imagem, como borda, textura, linha, canto e padrões mais complexos. Na literatura de visão computacional, algumas abordagens foram desenvolvidas para extrair estas características, tais como Texture Unit (TU), Local Binary Pattern (LBP) e Fuzzy Number Edge Detector (FUNED). O trabalho apresenta um novo método que modela a distribuição dos níveis de cinza de um micropadrão como um conjunto fuzzy, e com base nas funções de pertinência usadas gera códigos-fuzzy que representam o grau de pertinência de cada pixel vizinho com nível de cinza próximo do pixel central. A metodologia proposta é chamada de Local Fuzzy Pattern (LFP) e é aplicada na análise de textura usando a função sigmoide (LFP-s), a função triangular e simétrica (LFP-t) e a função gaussiana (LFP-g) para calcular o grau de pertinência do pixel central em relação à sua vizinhança. Para avaliar o desempenho da técnica proposta foram usados bases de texturas, cujas imagens foram amostradas aleatoriamente. Após processá-las pelas abordagens LFP-s, LFP-t, LFP-g e LBP, foram comparadas as taxas de acertos alcançadas usando a distância Chi-quadrado. Nos experimentos realizados também é avaliado o esforço computacional do LFP, comparando-o com o descritor LBP. Os resultados mostram que o LFP é eficaz na descrição de textura e que supera o LBP nos diferentes testes realizados. Neste trabalho também é demonstrado que a formulação do LFP é uma generalização de técnicas previamente publicadas, como Texture Unit, Local Binary Pattern e FUNED.
id USP_751401ac48b04052dab3e1abc176994b
oai_identifier_str oai:teses.usp.br:tde-29042013-154729
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise de micropadrões em imagens digitais baseada em números fuzzyAnalysis of micro-patterns in digital images based on fuzzy numbersAnálise de micropadrõesAnálise de texturaAnalysis of micro-patternsFuzzy numbersNúmeros fuzzyTexture analysisAs imagens digitais são frequentemente corrompidas por ruídos ou distorcidas pelo processo de aquisição. A teoria dos conjuntos fuzzy e a lógica fuzzy constituem uma alternativa mais adequada para lidar com tais incertezas, em comparação com os sistemas convencionais, baseados na lógica tradicional (crisp). Este trabalho propõe uma nova metodologia para análise de micropadrões de imagens digitais baseada em números fuzzy. Um micropadrão é uma estrutura de níveis de cinza dos pixels de uma vizinhança e pode descrever o contexto espacial da imagem, como borda, textura, linha, canto e padrões mais complexos. Na literatura de visão computacional, algumas abordagens foram desenvolvidas para extrair estas características, tais como Texture Unit (TU), Local Binary Pattern (LBP) e Fuzzy Number Edge Detector (FUNED). O trabalho apresenta um novo método que modela a distribuição dos níveis de cinza de um micropadrão como um conjunto fuzzy, e com base nas funções de pertinência usadas gera códigos-fuzzy que representam o grau de pertinência de cada pixel vizinho com nível de cinza próximo do pixel central. A metodologia proposta é chamada de Local Fuzzy Pattern (LFP) e é aplicada na análise de textura usando a função sigmoide (LFP-s), a função triangular e simétrica (LFP-t) e a função gaussiana (LFP-g) para calcular o grau de pertinência do pixel central em relação à sua vizinhança. Para avaliar o desempenho da técnica proposta foram usados bases de texturas, cujas imagens foram amostradas aleatoriamente. Após processá-las pelas abordagens LFP-s, LFP-t, LFP-g e LBP, foram comparadas as taxas de acertos alcançadas usando a distância Chi-quadrado. Nos experimentos realizados também é avaliado o esforço computacional do LFP, comparando-o com o descritor LBP. Os resultados mostram que o LFP é eficaz na descrição de textura e que supera o LBP nos diferentes testes realizados. Neste trabalho também é demonstrado que a formulação do LFP é uma generalização de técnicas previamente publicadas, como Texture Unit, Local Binary Pattern e FUNED.Digital images are often corrupted by noise and distorted by the acquisition process. The fuzzy set theory and fuzzy logic are an alternative more appropriate to deal with these uncertainties, in comparison with conventional treatment based on traditional logic (crisp). This work proposes a new methodology for the analysis of micro-patterns of digital images based on fuzzy numbers. A micro-pattern is the structure of the gray-level pixels within a neighborhood and can describe the spatial context of the image, such as edge, texture, line, corner and more complex patterns. In the literature of computer vision, some approaches have been developed to extract these features, such as Texture Unit (TU), Local Binary Pattern (LBP) and Fuzzy Number Edge Detector (FUNED). This work presents a new method that models the distribution of the gray levels of a micro-pattern as a fuzzy set, and based on the membership functions used generates fuzzy-codes that represent the membership degree of each neighbor pixel neighbor with gray-levels near of the central pixel. The proposed methodology is called Local Fuzzy Pattern (LFP) and is applied in the texture analysis by using a sigmoid (LFP-s), a symmetrical triangular (LFP-t) function and Gaussian function (LFP-g) for calculating the membership degree of a central pixel of a neighborhood. To evaluate the performance of the proposed technique were used two database, whose images were randomly sampled. After processing these images by the LFP-s, LFP-t, LFP-g and LBP approaches, it was compared the hit-rate reached by using the Chi-square distance. In the experiments also evaluated the computational effort of the LFP and surpasses the LBP that the different tests. The results show that the LFP-s is efficient to describe texture and that it surpasses the LBP in different tests. This work also demonstrates that the proposed formulation for the LFP is a generalization of previously published techniques such as Texture Unit, LBP and FUNED.Biblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonVieira, Raissa Tavares2013-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-154729/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-29042013-154729Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise de micropadrões em imagens digitais baseada em números fuzzy
Analysis of micro-patterns in digital images based on fuzzy numbers
title Análise de micropadrões em imagens digitais baseada em números fuzzy
spellingShingle Análise de micropadrões em imagens digitais baseada em números fuzzy
Vieira, Raissa Tavares
Análise de micropadrões
Análise de textura
Analysis of micro-patterns
Fuzzy numbers
Números fuzzy
Texture analysis
title_short Análise de micropadrões em imagens digitais baseada em números fuzzy
title_full Análise de micropadrões em imagens digitais baseada em números fuzzy
title_fullStr Análise de micropadrões em imagens digitais baseada em números fuzzy
title_full_unstemmed Análise de micropadrões em imagens digitais baseada em números fuzzy
title_sort Análise de micropadrões em imagens digitais baseada em números fuzzy
author Vieira, Raissa Tavares
author_facet Vieira, Raissa Tavares
author_role author
dc.contributor.none.fl_str_mv Gonzaga, Adilson
dc.contributor.author.fl_str_mv Vieira, Raissa Tavares
dc.subject.por.fl_str_mv Análise de micropadrões
Análise de textura
Analysis of micro-patterns
Fuzzy numbers
Números fuzzy
Texture analysis
topic Análise de micropadrões
Análise de textura
Analysis of micro-patterns
Fuzzy numbers
Números fuzzy
Texture analysis
description As imagens digitais são frequentemente corrompidas por ruídos ou distorcidas pelo processo de aquisição. A teoria dos conjuntos fuzzy e a lógica fuzzy constituem uma alternativa mais adequada para lidar com tais incertezas, em comparação com os sistemas convencionais, baseados na lógica tradicional (crisp). Este trabalho propõe uma nova metodologia para análise de micropadrões de imagens digitais baseada em números fuzzy. Um micropadrão é uma estrutura de níveis de cinza dos pixels de uma vizinhança e pode descrever o contexto espacial da imagem, como borda, textura, linha, canto e padrões mais complexos. Na literatura de visão computacional, algumas abordagens foram desenvolvidas para extrair estas características, tais como Texture Unit (TU), Local Binary Pattern (LBP) e Fuzzy Number Edge Detector (FUNED). O trabalho apresenta um novo método que modela a distribuição dos níveis de cinza de um micropadrão como um conjunto fuzzy, e com base nas funções de pertinência usadas gera códigos-fuzzy que representam o grau de pertinência de cada pixel vizinho com nível de cinza próximo do pixel central. A metodologia proposta é chamada de Local Fuzzy Pattern (LFP) e é aplicada na análise de textura usando a função sigmoide (LFP-s), a função triangular e simétrica (LFP-t) e a função gaussiana (LFP-g) para calcular o grau de pertinência do pixel central em relação à sua vizinhança. Para avaliar o desempenho da técnica proposta foram usados bases de texturas, cujas imagens foram amostradas aleatoriamente. Após processá-las pelas abordagens LFP-s, LFP-t, LFP-g e LBP, foram comparadas as taxas de acertos alcançadas usando a distância Chi-quadrado. Nos experimentos realizados também é avaliado o esforço computacional do LFP, comparando-o com o descritor LBP. Os resultados mostram que o LFP é eficaz na descrição de textura e que supera o LBP nos diferentes testes realizados. Neste trabalho também é demonstrado que a formulação do LFP é uma generalização de técnicas previamente publicadas, como Texture Unit, Local Binary Pattern e FUNED.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-154729/
url http://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-154729/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256541923639296