Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos

Detalhes bibliográficos
Autor(a) principal: Silveira, Vanda Donizetti Redondo
Data de Publicação: 1999
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12032018-105302/
Resumo: Inferência Bayesiana para pesquisa de mercado incluindo erros de resposta é estudado como uma mistura de duas distribuições de Bernoulli. Como a análise Bayesiana geralmente implica em cálculos complexos, o método de Monte Cano com dados ampliados é desenvolvido para obter os resumos marginais a posteriori. Variáveis latentes foram introduzidas para indicar qual componente da mistura gerou a informação com erro de classificação. Também, um procedimento Bayesiano baseado no conceito de \"p-value\" e na distância de variação total foi introduzida para medir o efeito do erro na distribuição marginal a posteriori. É também realizado, uma comparação entre o modelo misto proposto e o modelo exato introduzido por Gaba e VVinkler com o objetivo de verificar a eficiência da técnica aplicada. Uma ilustração com dados simulados é considerada
id USP_75dc1a2e87cd2accadfea53addfd413a
oai_identifier_str oai:teses.usp.br:tde-12032018-105302
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistosNot availableNão disponívelNot availableInferência Bayesiana para pesquisa de mercado incluindo erros de resposta é estudado como uma mistura de duas distribuições de Bernoulli. Como a análise Bayesiana geralmente implica em cálculos complexos, o método de Monte Cano com dados ampliados é desenvolvido para obter os resumos marginais a posteriori. Variáveis latentes foram introduzidas para indicar qual componente da mistura gerou a informação com erro de classificação. Também, um procedimento Bayesiano baseado no conceito de \"p-value\" e na distância de variação total foi introduzida para medir o efeito do erro na distribuição marginal a posteriori. É também realizado, uma comparação entre o modelo misto proposto e o modelo exato introduzido por Gaba e VVinkler com o objetivo de verificar a eficiência da técnica aplicada. Uma ilustração com dados simulados é consideradaBayesian Inference for market research including answer errors is studied as a mbcture of two Bernoulli distributions. Since a formal Bayesian analysis leads to intractable calculations, a Markov Chain Monte Cano method with data augmentation is developed to obtain the summary and marginal posteriors. Were introduced a latent variables that indicates which component of the mixture gives the information with classification errors. Also, a Bayesian procedure based on the Beyes p-value and the total variation distance to measure the effect of the errors on the marginal posterior distribution. R is also, accomplished a comparison between the proposed mixed model and the exact model introduced by Gaba and Winkler with the objective of verifying the efficiency of the applied technique. An illustration with simulated data is considered.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, JosemarSilveira, Vanda Donizetti Redondo1999-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-12032018-105302/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-12032018-105302Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
Not available
title Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
spellingShingle Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
Silveira, Vanda Donizetti Redondo
Não disponível
Not available
title_short Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
title_full Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
title_fullStr Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
title_full_unstemmed Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
title_sort Inferência Bayesiana para pesquisa de mercado com erros de resposta utilizando modelos mistos
author Silveira, Vanda Donizetti Redondo
author_facet Silveira, Vanda Donizetti Redondo
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Josemar
dc.contributor.author.fl_str_mv Silveira, Vanda Donizetti Redondo
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Inferência Bayesiana para pesquisa de mercado incluindo erros de resposta é estudado como uma mistura de duas distribuições de Bernoulli. Como a análise Bayesiana geralmente implica em cálculos complexos, o método de Monte Cano com dados ampliados é desenvolvido para obter os resumos marginais a posteriori. Variáveis latentes foram introduzidas para indicar qual componente da mistura gerou a informação com erro de classificação. Também, um procedimento Bayesiano baseado no conceito de \"p-value\" e na distância de variação total foi introduzida para medir o efeito do erro na distribuição marginal a posteriori. É também realizado, uma comparação entre o modelo misto proposto e o modelo exato introduzido por Gaba e VVinkler com o objetivo de verificar a eficiência da técnica aplicada. Uma ilustração com dados simulados é considerada
publishDate 1999
dc.date.none.fl_str_mv 1999-07-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12032018-105302/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12032018-105302/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256889154338816