Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods

Detalhes bibliográficos
Autor(a) principal: Castro, Rigoberto Castro
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18149/tde-15052024-161448/
Resumo: Technological advances have been successfully achieved in precision agriculture using auto-guidance systems in agricultural vehicles. Among these advances, the increase of efficiency and the productivity in field operations can be highlighted. Some auto-guidance driving systems are implemented using the GPS RTK system, which allows operations to centimeter accuracy. However, the geographic positioning errors, the vehicle dynamics, the agricultural devices and the field environment (slopes, soil condition, etc.) may influence the performance of GPS based autonomous agricultural vehicles. In this way, the evaluation of the auto-guidance driving systems becomes essential to the achievement of high precision levels in field operations. This evaluation can be performed by measuring the displacements using precise sensors installed in the vehicle, such as: cameras, lasers, odometer, and ultrasonic sensors, among others. Among the local sensing options, it is well-know that computational vision methods allow the location of any system in the space, becoming it a technical alternative for this evaluation. In this way, the objective of this research is to propose a methodology to assess the accuracy of auto-guidance systems under real field conditions by means of computer vision methods. The vehicle under study is a tractor equipped with an auto-guidance system, which is composed of a GPS RTK unit and an inertial measurement unit (IMU). The instrumentation consisted of two Canon Rebel T5 cameras with focal lens of 50 and 18 millimeters respectively. The pinhole camera method was used to map vehicle location in the field using computational vision techniques. In the study, multiple field tests were performed, proving that the use of the computer vision method is accurate to evaluate auto-guidance systems if devices, procedures, and parameters are properly selected
id USP_75e1059fde6c09a268da010d9ffdf158
oai_identifier_str oai:teses.usp.br:tde-15052024-161448
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methodsAvaliação da precisão de sistema de condução autônoma baseada em GPS em um veículo agrícola por métodos de visão computacionalagricultura de precisãocomputational visionGPS navigationimage processingnavegação GPSprecísion agricultureprocessamento de imagemsmart vehiclesveículos inteligentesvisão computacionalTechnological advances have been successfully achieved in precision agriculture using auto-guidance systems in agricultural vehicles. Among these advances, the increase of efficiency and the productivity in field operations can be highlighted. Some auto-guidance driving systems are implemented using the GPS RTK system, which allows operations to centimeter accuracy. However, the geographic positioning errors, the vehicle dynamics, the agricultural devices and the field environment (slopes, soil condition, etc.) may influence the performance of GPS based autonomous agricultural vehicles. In this way, the evaluation of the auto-guidance driving systems becomes essential to the achievement of high precision levels in field operations. This evaluation can be performed by measuring the displacements using precise sensors installed in the vehicle, such as: cameras, lasers, odometer, and ultrasonic sensors, among others. Among the local sensing options, it is well-know that computational vision methods allow the location of any system in the space, becoming it a technical alternative for this evaluation. In this way, the objective of this research is to propose a methodology to assess the accuracy of auto-guidance systems under real field conditions by means of computer vision methods. The vehicle under study is a tractor equipped with an auto-guidance system, which is composed of a GPS RTK unit and an inertial measurement unit (IMU). The instrumentation consisted of two Canon Rebel T5 cameras with focal lens of 50 and 18 millimeters respectively. The pinhole camera method was used to map vehicle location in the field using computational vision techniques. In the study, multiple field tests were performed, proving that the use of the computer vision method is accurate to evaluate auto-guidance systems if devices, procedures, and parameters are properly selectedAvanços tecnológicos foram alcançados com sucesso na agricultura de precisão utilizando sistemas de condução autônoma em veículos agrícolas. Entre esses avanços, destaca-se o aumento da eficiência e da produtividade nas operações de campo. Alguns sistemas de condução autônoma são implementados usando o sistema GPS RTK, que permite operações com precisão centrimétrica. No entanto, os erros de posicionamento geográfico, a dinâmica do veículo, os implementos agrícolas e ambiente de campo (encostas, condições do solo, etc.) podem influenciar o desempenho dos veículos agrícolas autônomos. Desta forma, a avaliação dos sistemas de condução autônoma torna-se essencial para a obtenção de altos níveis precisão. Esta avaliação pode ser realizada medindo os deslocamentos usando sensores instalados no veículo, tais como: câmeras, lasers, odômetro, sensores ultrassônicos, entre outros. Entre as opções, o método de visão computacional permite a localização de qualquer sistema no espaço, tornando-se uma alternativa técnica para esta avaliação. Desta forma, o objetivo desta pesquisa é propor um método para a avaliação da precisão dos sistemas de auto-orientação em condições reais de operação usando métodos de visão computacional. O veículo em estudo é um trator equipado com um sistema de auto-orientação o qual é integrado por uma unidade GPS RTK e por uma unidade de medição inercial (IMU). A instrumentação utilizada no desenvolvimento do sistema de visão computacional consiste em duas câmeras Canon Rebel T5 com lente focal de 50 e 18 milímetros, respectivamente. Foi utilizado o método de câmera pinhole para mapear a localização do veículo no campo usando técnicas de visão computacional. No estudo foram realizados múltiplos testes de campo, provando assim que o uso do método de visão computacional é preciso para avaliar sistemas de auto-orientação se dispositivos, procedimentos e parâmetros forem selecionados corretamenteBiblioteca Digitais de Teses e Dissertações da USPInamasu, Ricardo YassushiSilva, Maíra Martins daCastro, Rigoberto Castro2017-11-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18149/tde-15052024-161448/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-15T20:15:02Zoai:teses.usp.br:tde-15052024-161448Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-15T20:15:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
Avaliação da precisão de sistema de condução autônoma baseada em GPS em um veículo agrícola por métodos de visão computacional
title Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
spellingShingle Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
Castro, Rigoberto Castro
agricultura de precisão
computational vision
GPS navigation
image processing
navegação GPS
precísion agriculture
processamento de imagem
smart vehicles
veículos inteligentes
visão computacional
title_short Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
title_full Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
title_fullStr Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
title_full_unstemmed Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
title_sort Precision evaluation of a GPS based auto-guidance system in an agricultural vehicle by computational vision methods
author Castro, Rigoberto Castro
author_facet Castro, Rigoberto Castro
author_role author
dc.contributor.none.fl_str_mv Inamasu, Ricardo Yassushi
Silva, Maíra Martins da
dc.contributor.author.fl_str_mv Castro, Rigoberto Castro
dc.subject.por.fl_str_mv agricultura de precisão
computational vision
GPS navigation
image processing
navegação GPS
precísion agriculture
processamento de imagem
smart vehicles
veículos inteligentes
visão computacional
topic agricultura de precisão
computational vision
GPS navigation
image processing
navegação GPS
precísion agriculture
processamento de imagem
smart vehicles
veículos inteligentes
visão computacional
description Technological advances have been successfully achieved in precision agriculture using auto-guidance systems in agricultural vehicles. Among these advances, the increase of efficiency and the productivity in field operations can be highlighted. Some auto-guidance driving systems are implemented using the GPS RTK system, which allows operations to centimeter accuracy. However, the geographic positioning errors, the vehicle dynamics, the agricultural devices and the field environment (slopes, soil condition, etc.) may influence the performance of GPS based autonomous agricultural vehicles. In this way, the evaluation of the auto-guidance driving systems becomes essential to the achievement of high precision levels in field operations. This evaluation can be performed by measuring the displacements using precise sensors installed in the vehicle, such as: cameras, lasers, odometer, and ultrasonic sensors, among others. Among the local sensing options, it is well-know that computational vision methods allow the location of any system in the space, becoming it a technical alternative for this evaluation. In this way, the objective of this research is to propose a methodology to assess the accuracy of auto-guidance systems under real field conditions by means of computer vision methods. The vehicle under study is a tractor equipped with an auto-guidance system, which is composed of a GPS RTK unit and an inertial measurement unit (IMU). The instrumentation consisted of two Canon Rebel T5 cameras with focal lens of 50 and 18 millimeters respectively. The pinhole camera method was used to map vehicle location in the field using computational vision techniques. In the study, multiple field tests were performed, proving that the use of the computer vision method is accurate to evaluate auto-guidance systems if devices, procedures, and parameters are properly selected
publishDate 2017
dc.date.none.fl_str_mv 2017-11-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18149/tde-15052024-161448/
url https://www.teses.usp.br/teses/disponiveis/18/18149/tde-15052024-161448/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257022049812480