QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas

Detalhes bibliográficos
Autor(a) principal: Oliveira, Aline Alves
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/75/75134/tde-03052016-160333/
Resumo: Diferentes abordagens teóricas têm sido utilizadas em estudos de sistemas biomoleculares com o objetivo de contribuir com o tratamento de diversas doenças. Para a dor neuropática, por exemplo, o estudo de compostos que interagem com o receptor sigma-1 (Sig-1R) pode elucidar os principais fatores associados à atividade biológica dos mesmos. Nesse propósito, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) utilizando os métodos de regressão por Mínimos Quadrados Parciais (PLS) e Rede Neural Artificial (ANN) foram aplicados a 64 antagonistas do Sig-1R pertencentes à classe de 1-arilpirazóis. Modelos PLS e ANN foram utilizados com o objetivo de descrever comportamentos lineares e não lineares, respectivamente, entre um conjunto de descritores e a atividade biológica dos compostos selecionados. O modelo PLS foi obtido com 51 compostos no conjunto treinamento e 13 compostos no conjunto teste (r² = 0,768, q² = 0,684 e r²teste = 0,785). Testes de leave-N-out, randomização da atividade biológica e detecção de outliers confirmaram a robustez e estabilidade dos modelos e mostraram que os mesmos não foram obtidos por correlações ao acaso. Modelos também foram gerados a partir da Rede Neural Artificial Perceptron de Multicamadas (MLP-ANN), sendo que a arquitetura 6-12-1, treinada com as funções de transferência tansig-tansig, apresentou a melhor resposta para a predição da atividade biológica dos compostos (r²treinamento = 0,891, r²validação = 0,852 e r²teste = 0,793). Outra abordagem foi utilizada para simular o ambiente de membranas sinápticas utilizando bicamadas lipídicas compostas por POPC, DOPE, POPS e colesterol. Os estudos de dinâmica molecular desenvolvidos mostraram que altas concentrações de colesterol induzem redução da área por lipídeo e difusão lateral e aumento na espessura da membrana e nos valores de parâmetro de ordem causados pelo ordenamento das cadeias acil dos fosfolipídeos. As bicamadas lipídicas obtidas podem ser usadas para simular interações entre lipídeos e pequenas moléculas ou proteínas contribuindo para as pesquisas associadas a doenças como Alzheimer e Parkinson. As abordagens usadas nessa tese são essenciais para o desenvolvimento de novas pesquisas em Química Medicinal Computacional.
id USP_77a8af79e9c289ece8d8b3d5743054a1
oai_identifier_str oai:teses.usp.br:tde-03052016-160333
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicasQSAR and Molecular Dynamics in the study of biomolecular systems: biological activity prediction of sigma-1 receptor antagonists and simulations of lipid bilayers1-arilpirazol1-arylpyrazoleANNANNcholesterolcolesterolDOPEDOPEmembrana sinápticaPLSPLSPOPCPOPCPOPSPOPSQSARQSARSig-1Rsynaptic membraneDiferentes abordagens teóricas têm sido utilizadas em estudos de sistemas biomoleculares com o objetivo de contribuir com o tratamento de diversas doenças. Para a dor neuropática, por exemplo, o estudo de compostos que interagem com o receptor sigma-1 (Sig-1R) pode elucidar os principais fatores associados à atividade biológica dos mesmos. Nesse propósito, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) utilizando os métodos de regressão por Mínimos Quadrados Parciais (PLS) e Rede Neural Artificial (ANN) foram aplicados a 64 antagonistas do Sig-1R pertencentes à classe de 1-arilpirazóis. Modelos PLS e ANN foram utilizados com o objetivo de descrever comportamentos lineares e não lineares, respectivamente, entre um conjunto de descritores e a atividade biológica dos compostos selecionados. O modelo PLS foi obtido com 51 compostos no conjunto treinamento e 13 compostos no conjunto teste (r² = 0,768, q² = 0,684 e r²teste = 0,785). Testes de leave-N-out, randomização da atividade biológica e detecção de outliers confirmaram a robustez e estabilidade dos modelos e mostraram que os mesmos não foram obtidos por correlações ao acaso. Modelos também foram gerados a partir da Rede Neural Artificial Perceptron de Multicamadas (MLP-ANN), sendo que a arquitetura 6-12-1, treinada com as funções de transferência tansig-tansig, apresentou a melhor resposta para a predição da atividade biológica dos compostos (r²treinamento = 0,891, r²validação = 0,852 e r²teste = 0,793). Outra abordagem foi utilizada para simular o ambiente de membranas sinápticas utilizando bicamadas lipídicas compostas por POPC, DOPE, POPS e colesterol. Os estudos de dinâmica molecular desenvolvidos mostraram que altas concentrações de colesterol induzem redução da área por lipídeo e difusão lateral e aumento na espessura da membrana e nos valores de parâmetro de ordem causados pelo ordenamento das cadeias acil dos fosfolipídeos. As bicamadas lipídicas obtidas podem ser usadas para simular interações entre lipídeos e pequenas moléculas ou proteínas contribuindo para as pesquisas associadas a doenças como Alzheimer e Parkinson. As abordagens usadas nessa tese são essenciais para o desenvolvimento de novas pesquisas em Química Medicinal Computacional.Different theoretical approaches have been used in the studies of biomolecular systems aiming to contribute with the treatment of several diseases. For neuropathic pain, for example, the study of compounds that interact with sigma-1 receptor (Sig-1R) can elucidate the main factors associated to their biological activities. For this purpose, studies of Quantitative Structure-Activity Relationships (QSAR) using Partial Least Squares (PLS) and Artificial Neural Network (ANN) methods were applied to 64 Sig-1R antagonists belong to 1-arylpyrazole class. PLS and ANN models were used in order to describe linear and nonlinear behavior, respectively, between a set of descriptors and the biological activity of the selected compounds. The PLS model was obtained with 51 compounds in the training set and 13 compounds in the test set (r² = 0.768, q² = 0.684 and r²test = 0.785). Leave-N-out tests, biological activity randomization and outliers detection confirmed the robustness and stability of the models and showed that they were not obtained by chance correlations. Models were also generated from Multilayer Perceptron Artificial Neural Network (MLP-ANN) and the 6-12-1 architecture, trained by tansig-tansig transfer functions, showed the best result for the biological activity prediction of the compounds (r²training = 0.891, r²validation = 0.852 and r²test = 0.793). Another approach was used to simulate synaptic membranes environment using lipid bilayers composed by POPC, DOPE, POPS and cholesterol. Performed molecular dynamics studies showed that high cholesterol concentration induces decrease of area per lipid and lateral diffusion and increase of membrane thickness and order parameter caused by ordering of phospholipids acil chains. The obtained lipid bilayers can be used to simulate interactions between lipids and small molecules or proteins contributing for researches associated to Alzheimer and Parkinson diseases. The approaches used in this thesis are essential for the development of new researches in Computational Medicinal Chemistry.Biblioteca Digitais de Teses e Dissertações da USPSilva, Albérico Borges Ferreira daOliveira, Aline Alves2016-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/75/75134/tde-03052016-160333/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-03052016-160333Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
QSAR and Molecular Dynamics in the study of biomolecular systems: biological activity prediction of sigma-1 receptor antagonists and simulations of lipid bilayers
title QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
spellingShingle QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
Oliveira, Aline Alves
1-arilpirazol
1-arylpyrazole
ANN
ANN
cholesterol
colesterol
DOPE
DOPE
membrana sináptica
PLS
PLS
POPC
POPC
POPS
POPS
QSAR
QSAR
Sig-1R
synaptic membrane
title_short QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
title_full QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
title_fullStr QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
title_full_unstemmed QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
title_sort QSAR e dinâmica molecular no estudo de sistemas biomoleculares: predição da atividade biológica de antagonistas do receptor sigma-1 e simulações de bicamadas lipídicas
author Oliveira, Aline Alves
author_facet Oliveira, Aline Alves
author_role author
dc.contributor.none.fl_str_mv Silva, Albérico Borges Ferreira da
dc.contributor.author.fl_str_mv Oliveira, Aline Alves
dc.subject.por.fl_str_mv 1-arilpirazol
1-arylpyrazole
ANN
ANN
cholesterol
colesterol
DOPE
DOPE
membrana sináptica
PLS
PLS
POPC
POPC
POPS
POPS
QSAR
QSAR
Sig-1R
synaptic membrane
topic 1-arilpirazol
1-arylpyrazole
ANN
ANN
cholesterol
colesterol
DOPE
DOPE
membrana sináptica
PLS
PLS
POPC
POPC
POPS
POPS
QSAR
QSAR
Sig-1R
synaptic membrane
description Diferentes abordagens teóricas têm sido utilizadas em estudos de sistemas biomoleculares com o objetivo de contribuir com o tratamento de diversas doenças. Para a dor neuropática, por exemplo, o estudo de compostos que interagem com o receptor sigma-1 (Sig-1R) pode elucidar os principais fatores associados à atividade biológica dos mesmos. Nesse propósito, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) utilizando os métodos de regressão por Mínimos Quadrados Parciais (PLS) e Rede Neural Artificial (ANN) foram aplicados a 64 antagonistas do Sig-1R pertencentes à classe de 1-arilpirazóis. Modelos PLS e ANN foram utilizados com o objetivo de descrever comportamentos lineares e não lineares, respectivamente, entre um conjunto de descritores e a atividade biológica dos compostos selecionados. O modelo PLS foi obtido com 51 compostos no conjunto treinamento e 13 compostos no conjunto teste (r² = 0,768, q² = 0,684 e r²teste = 0,785). Testes de leave-N-out, randomização da atividade biológica e detecção de outliers confirmaram a robustez e estabilidade dos modelos e mostraram que os mesmos não foram obtidos por correlações ao acaso. Modelos também foram gerados a partir da Rede Neural Artificial Perceptron de Multicamadas (MLP-ANN), sendo que a arquitetura 6-12-1, treinada com as funções de transferência tansig-tansig, apresentou a melhor resposta para a predição da atividade biológica dos compostos (r²treinamento = 0,891, r²validação = 0,852 e r²teste = 0,793). Outra abordagem foi utilizada para simular o ambiente de membranas sinápticas utilizando bicamadas lipídicas compostas por POPC, DOPE, POPS e colesterol. Os estudos de dinâmica molecular desenvolvidos mostraram que altas concentrações de colesterol induzem redução da área por lipídeo e difusão lateral e aumento na espessura da membrana e nos valores de parâmetro de ordem causados pelo ordenamento das cadeias acil dos fosfolipídeos. As bicamadas lipídicas obtidas podem ser usadas para simular interações entre lipídeos e pequenas moléculas ou proteínas contribuindo para as pesquisas associadas a doenças como Alzheimer e Parkinson. As abordagens usadas nessa tese são essenciais para o desenvolvimento de novas pesquisas em Química Medicinal Computacional.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/75/75134/tde-03052016-160333/
url http://www.teses.usp.br/teses/disponiveis/75/75134/tde-03052016-160333/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256634201473024