Nonlinear supersonic flutter analysis of reinforced laminated curved panels

Detalhes bibliográficos
Autor(a) principal: Cabral, Myrella Vieira
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18161/tde-22062021-173135/
Resumo: The self-excited aeroelastic instability of thin plates or shells in the supersonic regime is called panel flutter, which may cause severe structural failure in aircraft and spacecraft. Thus, a reliable modeling of such phenomenon is crucial for safely predicting the lifespan of aircraft skins. Indeed, aeronautical skins are typically composed of large internally reinforced panels. The presence of the stiffening components subdivides the panel into several cells, which may interact structurally. However, the ample majority of published studies concerning the aeroelastic behavior of shells and plates treats each skin panel as an isolated structure. In this context, the present research project aims to investigate the effects of the structural coupling between the multiple curved panels and to assess the inaccuracies of the single-panel model by systematically comparing its results with those from the current multibay model. Moreover, the curvature effects will also be investigated. To do that, the Mindlin shallow shell theory coupled with the nonlinear von Kármán strains was applied. For the aerodynamic model, the first-order piston theory is applied, which is suitable for high-supersonic flows. The energy equations are discretized through the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain by using a Newmark integration method. The final algorithm is verified and validated through comparison with numerical and analytical solutions from the literature and with the commercial finite element software, ABAQUS. Symmetric and asymmetric composite laminated double cylindrical panels with different curvature ratios were analyzed for the streamwise and cross-stream configurations concerning the supersonic flow direction. Therefore, the effect of curvature, flow direction, and lamination scheme in the pre- and post flutter behavior of curved cylindrical panels were investigated.
id USP_78a43c43333150918ec013ffc13bbce4
oai_identifier_str oai:teses.usp.br:tde-22062021-173135
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Nonlinear supersonic flutter analysis of reinforced laminated curved panelsAnálise não linear do flutter supersônico de painéis curvos laminados reforçadosFlutter de múltiplos painéisAeroelasticidadeAeroelasticityCascas rasasFinite element methodMétodo dos elementos finitosMultibay panel flutterShallow shellsThe self-excited aeroelastic instability of thin plates or shells in the supersonic regime is called panel flutter, which may cause severe structural failure in aircraft and spacecraft. Thus, a reliable modeling of such phenomenon is crucial for safely predicting the lifespan of aircraft skins. Indeed, aeronautical skins are typically composed of large internally reinforced panels. The presence of the stiffening components subdivides the panel into several cells, which may interact structurally. However, the ample majority of published studies concerning the aeroelastic behavior of shells and plates treats each skin panel as an isolated structure. In this context, the present research project aims to investigate the effects of the structural coupling between the multiple curved panels and to assess the inaccuracies of the single-panel model by systematically comparing its results with those from the current multibay model. Moreover, the curvature effects will also be investigated. To do that, the Mindlin shallow shell theory coupled with the nonlinear von Kármán strains was applied. For the aerodynamic model, the first-order piston theory is applied, which is suitable for high-supersonic flows. The energy equations are discretized through the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain by using a Newmark integration method. The final algorithm is verified and validated through comparison with numerical and analytical solutions from the literature and with the commercial finite element software, ABAQUS. Symmetric and asymmetric composite laminated double cylindrical panels with different curvature ratios were analyzed for the streamwise and cross-stream configurations concerning the supersonic flow direction. Therefore, the effect of curvature, flow direction, and lamination scheme in the pre- and post flutter behavior of curved cylindrical panels were investigated.A instabilidade aeroelástica autoexcitada de placas ou cascas finas no regime supersônico é denominada flutter de painel e é capaz de causar falhas estruturais graves em aeronaves e veículos espaciais. Desse modo, para a previsão segura da vida em fadiga de revestimentos aeroespaciais, é fundamental que sejam realizadas análises confiáveis deste fenômeno. De fato, revestimentos aeronáuticos são tipicamente compostos por grandes painéis reforçados internamente. A presença desses elementos acaba subdividindo o painel em várias células menores capazes de interagir estruturalmente. No entanto, a grande maioria dos trabalhos publicados a respeito do comportamento aeroelástico de cascas e placas trata cada painel como uma estrutura isolada. Nesse contexto, o presente projeto de pesquisa tem como objetivo investigar os efeitos do acoplamento estrutural entre múltiplos painéis curvos e avaliar as imprecisões do modelo de painel isolado através de uma análise comparativa sistemática dos resultados de painéis isolados com o do presente modelo multicélula. Além disso, os efeitos de curvatura também serão investigados. Para tanto, a teoria de Mindlin para cascas rasas será utilizada em conjunto com as deformações não lineares de von Kármán. Para o modelo aerodinâmico, foi utilizada a teoria de primeira ordem do pistão, adequada para escoamentos supersônicos. As equações de energia são discretizadas através do método dos elementos finitos, obtendo-se, então, as equações aeroelásticas do movimento. Essas equações são resolvidas no domínio do tempo através de um método de integração de Newmark. O código final é verificado e validado por meio da comparação com soluções numéricas e analíticas das literatura e com o software comercial de elementos finitos, ABAQUS. Painéis cilíndricos de compósito com laminação simétrica e assimética com diferentes razões de curvatura foram analisados para as configurações streamwise e cross-stream referentes à direção do escoamento supersônico. Portanto, o efeito da curvatura, da direção do fluido e do esquema de laminação no comportamento anterior e posterior ao flutter de painéis curvos cilíndricos foram investigados.Biblioteca Digitais de Teses e Dissertações da USPMarques, Flavio DonizetiCabral, Myrella Vieira2021-04-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18161/tde-22062021-173135/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-29T22:47:02Zoai:teses.usp.br:tde-22062021-173135Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-29T22:47:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Nonlinear supersonic flutter analysis of reinforced laminated curved panels
Análise não linear do flutter supersônico de painéis curvos laminados reforçados
title Nonlinear supersonic flutter analysis of reinforced laminated curved panels
spellingShingle Nonlinear supersonic flutter analysis of reinforced laminated curved panels
Cabral, Myrella Vieira
Flutter de múltiplos painéis
Aeroelasticidade
Aeroelasticity
Cascas rasas
Finite element method
Método dos elementos finitos
Multibay panel flutter
Shallow shells
title_short Nonlinear supersonic flutter analysis of reinforced laminated curved panels
title_full Nonlinear supersonic flutter analysis of reinforced laminated curved panels
title_fullStr Nonlinear supersonic flutter analysis of reinforced laminated curved panels
title_full_unstemmed Nonlinear supersonic flutter analysis of reinforced laminated curved panels
title_sort Nonlinear supersonic flutter analysis of reinforced laminated curved panels
author Cabral, Myrella Vieira
author_facet Cabral, Myrella Vieira
author_role author
dc.contributor.none.fl_str_mv Marques, Flavio Donizeti
dc.contributor.author.fl_str_mv Cabral, Myrella Vieira
dc.subject.por.fl_str_mv Flutter de múltiplos painéis
Aeroelasticidade
Aeroelasticity
Cascas rasas
Finite element method
Método dos elementos finitos
Multibay panel flutter
Shallow shells
topic Flutter de múltiplos painéis
Aeroelasticidade
Aeroelasticity
Cascas rasas
Finite element method
Método dos elementos finitos
Multibay panel flutter
Shallow shells
description The self-excited aeroelastic instability of thin plates or shells in the supersonic regime is called panel flutter, which may cause severe structural failure in aircraft and spacecraft. Thus, a reliable modeling of such phenomenon is crucial for safely predicting the lifespan of aircraft skins. Indeed, aeronautical skins are typically composed of large internally reinforced panels. The presence of the stiffening components subdivides the panel into several cells, which may interact structurally. However, the ample majority of published studies concerning the aeroelastic behavior of shells and plates treats each skin panel as an isolated structure. In this context, the present research project aims to investigate the effects of the structural coupling between the multiple curved panels and to assess the inaccuracies of the single-panel model by systematically comparing its results with those from the current multibay model. Moreover, the curvature effects will also be investigated. To do that, the Mindlin shallow shell theory coupled with the nonlinear von Kármán strains was applied. For the aerodynamic model, the first-order piston theory is applied, which is suitable for high-supersonic flows. The energy equations are discretized through the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain by using a Newmark integration method. The final algorithm is verified and validated through comparison with numerical and analytical solutions from the literature and with the commercial finite element software, ABAQUS. Symmetric and asymmetric composite laminated double cylindrical panels with different curvature ratios were analyzed for the streamwise and cross-stream configurations concerning the supersonic flow direction. Therefore, the effect of curvature, flow direction, and lamination scheme in the pre- and post flutter behavior of curved cylindrical panels were investigated.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18161/tde-22062021-173135/
url https://www.teses.usp.br/teses/disponiveis/18/18161/tde-22062021-173135/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257273432276992