Model-based deep learning to restore low-dose digital breast tomosynthesis images

Detalhes bibliográficos
Autor(a) principal: Vimieiro, Rodrigo de Barros
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/
Resumo: Digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) are the most commonly used exams for breast cancer screening. In these systems, achieving high image quality is crucial for radiologists to detect the earliest signs of breast cancer and improve the patient\'s prognosis. The radiation dose is also a concern, given that these systems employ ionizing radiation. While current systems operate within safe radiation margins, there is a growing desire to minimize radiation dose without compromising image quality. To address this challenge, image restoration techniques have emerged as valuable tools to enhance image quality from low-dose (LD) acquisitions. Traditional restoration methods rely on mathematical models that represent the underlying physics of the acquisition system. Convolutional neural networks (CNN), employing modern deep learning (DL) techniques, are capable of learning the image restoration task from data and have exhibited substantial progress in recent years. This work proposes a hybrid model-based deep learning (MBDL) framework for the restoration of DBT images acquired with reduced radiation doses, benefiting from the advantages of both fields. Specifically, our hypothesis is that the combination of known mathematical models with data-based (DB) models can improve the results of purely MB or DB approaches. First, we investigate the application of a CNN architecture to restore FFDM images, also evaluating the influence of various loss functions and diverse training strategies. Second, we introduce an MBDL approach inspired by a pipeline designed to restore LD mammographic images. We use a variance stabilization transformation (VST) and known system-related parameters to introduce priors implemented as neural network layers. Considering a Poisson-Gaussian noise model, this framework operates within a VST domain, where the noise becomes approximately Gaussian, signal-independent, and with unity variance, enhancing the stability and simplicity of the learning process. Moreover, we propose a bias-residual noise loss function to control the final noise characteristics. Three different CNN architectures were tested and resulted in better performance compared with solely DB approaches. Finally, we also propose an MBDL method to restore mammographic images corrupted with spatially correlated noise. Although further validation is necessary, preliminary results indicate that the MBDL may be suitable for this task. In conclusion, the synergy of MB methods and DB approaches has great potential to be explored within the DL domain, demonstrated by the improved results over models that do not benefit from those priors.
id USP_78ffc40e857aa19c474cf2ac96d4aec6
oai_identifier_str oai:teses.usp.br:tde-03012024-114253
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Model-based deep learning to restore low-dose digital breast tomosynthesis imagesAprendizagem profunda baseada em modelo para restauração de imagens de tomossíntese digital mamária de baixa doseaprendizado profundoaprendizado profundo baseado em modeloartificial neural networksconvolutional neural networksdeep learningdigital breast tomosynthesisimage restorationmodel-based deep learningredes neurais artificiaisredes neurais convolucionaisrestauração de imagenstomossíntese digital mamáriaDigital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) are the most commonly used exams for breast cancer screening. In these systems, achieving high image quality is crucial for radiologists to detect the earliest signs of breast cancer and improve the patient\'s prognosis. The radiation dose is also a concern, given that these systems employ ionizing radiation. While current systems operate within safe radiation margins, there is a growing desire to minimize radiation dose without compromising image quality. To address this challenge, image restoration techniques have emerged as valuable tools to enhance image quality from low-dose (LD) acquisitions. Traditional restoration methods rely on mathematical models that represent the underlying physics of the acquisition system. Convolutional neural networks (CNN), employing modern deep learning (DL) techniques, are capable of learning the image restoration task from data and have exhibited substantial progress in recent years. This work proposes a hybrid model-based deep learning (MBDL) framework for the restoration of DBT images acquired with reduced radiation doses, benefiting from the advantages of both fields. Specifically, our hypothesis is that the combination of known mathematical models with data-based (DB) models can improve the results of purely MB or DB approaches. First, we investigate the application of a CNN architecture to restore FFDM images, also evaluating the influence of various loss functions and diverse training strategies. Second, we introduce an MBDL approach inspired by a pipeline designed to restore LD mammographic images. We use a variance stabilization transformation (VST) and known system-related parameters to introduce priors implemented as neural network layers. Considering a Poisson-Gaussian noise model, this framework operates within a VST domain, where the noise becomes approximately Gaussian, signal-independent, and with unity variance, enhancing the stability and simplicity of the learning process. Moreover, we propose a bias-residual noise loss function to control the final noise characteristics. Three different CNN architectures were tested and resulted in better performance compared with solely DB approaches. Finally, we also propose an MBDL method to restore mammographic images corrupted with spatially correlated noise. Although further validation is necessary, preliminary results indicate that the MBDL may be suitable for this task. In conclusion, the synergy of MB methods and DB approaches has great potential to be explored within the DL domain, demonstrated by the improved results over models that do not benefit from those priors.A tomossíntese digital da mama (DBT) e a mamografia digital de campo total (FFDM) são os exames mais utilizados para rastreamento do câncer de mama. A dose de radiação é uma preocupação, visto que estes sistemas utilizam radiação ionizante. Embora os sistemas atuais operem dentro de margens seguras de radiação, há um desejo crescente de minimizar a dose de radiação sem comprometer a qualidade da imagem. As técnicas de restauração de imagens surgiram como ferramentas para melhorar a qualidade da imagem a partir de aquisições de baixa dose. Os métodos tradicionais de restauração baseiam-se em modelos matemáticos que representam a física de aquisição do sistema. As redes neurais convolucionais (CNN) são capazes de aprender a partir de dados e têm apresentado progresso substancial nos últimos anos. Este trabalho propõe uma estrutura híbrida de aprendizagem profunda baseada em modelo (MBDL) para a restauração de imagens DBT adquiridas com doses reduzidas de radiação, beneficiando-se das vantagens de ambos os campos. Especificamente, nossa hipótese é que a combinação de modelos matemáticos conhecidos com modelos baseados em dados (DB) pode melhorar os resultados de abordagens puramente MB ou DB. Primeiramente, investigamos a aplicação de uma arquitetura CNN para restaurar imagens FFDM, avaliando também a influência de diversas funções de custo e diversas estratégias de treinamento. Em segundo lugar, apresentamos uma abordagem MBDL inspirada em um framework projetado para restaurar imagens mamográficas de baixa dose. Usamos um transformada de estabilização de variância (VST) e parâmetros conhecidos relacionados ao sistema para introduzir conhecimentos a priori implementados como camadas da rede neural. Três arquiteturas diferentes foram testadas e resultaram em um melhor desempenho em comparação com abordagens exclusivamente baseadas em dados. Finalmente, também propomos um método MBDL para restaurar imagens mamográficas corrompidas com ruído correlacionado espacialmente. Embora seja necessária uma validação adicional, os resultados preliminares indicam que o MBDL pode ser adequado para esta tarefa. Em conclusão, a sinergia entre métodos MB e abordagens de DB tem grande potencial a ser explorada, demonstrado pelos melhores resultados em relação aos modelos que não se beneficiam desses conhecimentos a priori.Biblioteca Digitais de Teses e Dissertações da USPBorges, Lucas RodriguesVieira, Marcelo Andrade da CostaVimieiro, Rodrigo de Barros2023-11-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-03012024-114253Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Model-based deep learning to restore low-dose digital breast tomosynthesis images
Aprendizagem profunda baseada em modelo para restauração de imagens de tomossíntese digital mamária de baixa dose
title Model-based deep learning to restore low-dose digital breast tomosynthesis images
spellingShingle Model-based deep learning to restore low-dose digital breast tomosynthesis images
Vimieiro, Rodrigo de Barros
aprendizado profundo
aprendizado profundo baseado em modelo
artificial neural networks
convolutional neural networks
deep learning
digital breast tomosynthesis
image restoration
model-based deep learning
redes neurais artificiais
redes neurais convolucionais
restauração de imagens
tomossíntese digital mamária
title_short Model-based deep learning to restore low-dose digital breast tomosynthesis images
title_full Model-based deep learning to restore low-dose digital breast tomosynthesis images
title_fullStr Model-based deep learning to restore low-dose digital breast tomosynthesis images
title_full_unstemmed Model-based deep learning to restore low-dose digital breast tomosynthesis images
title_sort Model-based deep learning to restore low-dose digital breast tomosynthesis images
author Vimieiro, Rodrigo de Barros
author_facet Vimieiro, Rodrigo de Barros
author_role author
dc.contributor.none.fl_str_mv Borges, Lucas Rodrigues
Vieira, Marcelo Andrade da Costa
dc.contributor.author.fl_str_mv Vimieiro, Rodrigo de Barros
dc.subject.por.fl_str_mv aprendizado profundo
aprendizado profundo baseado em modelo
artificial neural networks
convolutional neural networks
deep learning
digital breast tomosynthesis
image restoration
model-based deep learning
redes neurais artificiais
redes neurais convolucionais
restauração de imagens
tomossíntese digital mamária
topic aprendizado profundo
aprendizado profundo baseado em modelo
artificial neural networks
convolutional neural networks
deep learning
digital breast tomosynthesis
image restoration
model-based deep learning
redes neurais artificiais
redes neurais convolucionais
restauração de imagens
tomossíntese digital mamária
description Digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) are the most commonly used exams for breast cancer screening. In these systems, achieving high image quality is crucial for radiologists to detect the earliest signs of breast cancer and improve the patient\'s prognosis. The radiation dose is also a concern, given that these systems employ ionizing radiation. While current systems operate within safe radiation margins, there is a growing desire to minimize radiation dose without compromising image quality. To address this challenge, image restoration techniques have emerged as valuable tools to enhance image quality from low-dose (LD) acquisitions. Traditional restoration methods rely on mathematical models that represent the underlying physics of the acquisition system. Convolutional neural networks (CNN), employing modern deep learning (DL) techniques, are capable of learning the image restoration task from data and have exhibited substantial progress in recent years. This work proposes a hybrid model-based deep learning (MBDL) framework for the restoration of DBT images acquired with reduced radiation doses, benefiting from the advantages of both fields. Specifically, our hypothesis is that the combination of known mathematical models with data-based (DB) models can improve the results of purely MB or DB approaches. First, we investigate the application of a CNN architecture to restore FFDM images, also evaluating the influence of various loss functions and diverse training strategies. Second, we introduce an MBDL approach inspired by a pipeline designed to restore LD mammographic images. We use a variance stabilization transformation (VST) and known system-related parameters to introduce priors implemented as neural network layers. Considering a Poisson-Gaussian noise model, this framework operates within a VST domain, where the noise becomes approximately Gaussian, signal-independent, and with unity variance, enhancing the stability and simplicity of the learning process. Moreover, we propose a bias-residual noise loss function to control the final noise characteristics. Three different CNN architectures were tested and resulted in better performance compared with solely DB approaches. Finally, we also propose an MBDL method to restore mammographic images corrupted with spatially correlated noise. Although further validation is necessary, preliminary results indicate that the MBDL may be suitable for this task. In conclusion, the synergy of MB methods and DB approaches has great potential to be explored within the DL domain, demonstrated by the improved results over models that do not benefit from those priors.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/
url https://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256482961162240