Model-based deep learning to restore low-dose digital breast tomosynthesis images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/ |
Resumo: | Digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) are the most commonly used exams for breast cancer screening. In these systems, achieving high image quality is crucial for radiologists to detect the earliest signs of breast cancer and improve the patient\'s prognosis. The radiation dose is also a concern, given that these systems employ ionizing radiation. While current systems operate within safe radiation margins, there is a growing desire to minimize radiation dose without compromising image quality. To address this challenge, image restoration techniques have emerged as valuable tools to enhance image quality from low-dose (LD) acquisitions. Traditional restoration methods rely on mathematical models that represent the underlying physics of the acquisition system. Convolutional neural networks (CNN), employing modern deep learning (DL) techniques, are capable of learning the image restoration task from data and have exhibited substantial progress in recent years. This work proposes a hybrid model-based deep learning (MBDL) framework for the restoration of DBT images acquired with reduced radiation doses, benefiting from the advantages of both fields. Specifically, our hypothesis is that the combination of known mathematical models with data-based (DB) models can improve the results of purely MB or DB approaches. First, we investigate the application of a CNN architecture to restore FFDM images, also evaluating the influence of various loss functions and diverse training strategies. Second, we introduce an MBDL approach inspired by a pipeline designed to restore LD mammographic images. We use a variance stabilization transformation (VST) and known system-related parameters to introduce priors implemented as neural network layers. Considering a Poisson-Gaussian noise model, this framework operates within a VST domain, where the noise becomes approximately Gaussian, signal-independent, and with unity variance, enhancing the stability and simplicity of the learning process. Moreover, we propose a bias-residual noise loss function to control the final noise characteristics. Three different CNN architectures were tested and resulted in better performance compared with solely DB approaches. Finally, we also propose an MBDL method to restore mammographic images corrupted with spatially correlated noise. Although further validation is necessary, preliminary results indicate that the MBDL may be suitable for this task. In conclusion, the synergy of MB methods and DB approaches has great potential to be explored within the DL domain, demonstrated by the improved results over models that do not benefit from those priors. |
id |
USP_78ffc40e857aa19c474cf2ac96d4aec6 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03012024-114253 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Model-based deep learning to restore low-dose digital breast tomosynthesis imagesAprendizagem profunda baseada em modelo para restauração de imagens de tomossíntese digital mamária de baixa doseaprendizado profundoaprendizado profundo baseado em modeloartificial neural networksconvolutional neural networksdeep learningdigital breast tomosynthesisimage restorationmodel-based deep learningredes neurais artificiaisredes neurais convolucionaisrestauração de imagenstomossíntese digital mamáriaDigital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) are the most commonly used exams for breast cancer screening. In these systems, achieving high image quality is crucial for radiologists to detect the earliest signs of breast cancer and improve the patient\'s prognosis. The radiation dose is also a concern, given that these systems employ ionizing radiation. While current systems operate within safe radiation margins, there is a growing desire to minimize radiation dose without compromising image quality. To address this challenge, image restoration techniques have emerged as valuable tools to enhance image quality from low-dose (LD) acquisitions. Traditional restoration methods rely on mathematical models that represent the underlying physics of the acquisition system. Convolutional neural networks (CNN), employing modern deep learning (DL) techniques, are capable of learning the image restoration task from data and have exhibited substantial progress in recent years. This work proposes a hybrid model-based deep learning (MBDL) framework for the restoration of DBT images acquired with reduced radiation doses, benefiting from the advantages of both fields. Specifically, our hypothesis is that the combination of known mathematical models with data-based (DB) models can improve the results of purely MB or DB approaches. First, we investigate the application of a CNN architecture to restore FFDM images, also evaluating the influence of various loss functions and diverse training strategies. Second, we introduce an MBDL approach inspired by a pipeline designed to restore LD mammographic images. We use a variance stabilization transformation (VST) and known system-related parameters to introduce priors implemented as neural network layers. Considering a Poisson-Gaussian noise model, this framework operates within a VST domain, where the noise becomes approximately Gaussian, signal-independent, and with unity variance, enhancing the stability and simplicity of the learning process. Moreover, we propose a bias-residual noise loss function to control the final noise characteristics. Three different CNN architectures were tested and resulted in better performance compared with solely DB approaches. Finally, we also propose an MBDL method to restore mammographic images corrupted with spatially correlated noise. Although further validation is necessary, preliminary results indicate that the MBDL may be suitable for this task. In conclusion, the synergy of MB methods and DB approaches has great potential to be explored within the DL domain, demonstrated by the improved results over models that do not benefit from those priors.A tomossíntese digital da mama (DBT) e a mamografia digital de campo total (FFDM) são os exames mais utilizados para rastreamento do câncer de mama. A dose de radiação é uma preocupação, visto que estes sistemas utilizam radiação ionizante. Embora os sistemas atuais operem dentro de margens seguras de radiação, há um desejo crescente de minimizar a dose de radiação sem comprometer a qualidade da imagem. As técnicas de restauração de imagens surgiram como ferramentas para melhorar a qualidade da imagem a partir de aquisições de baixa dose. Os métodos tradicionais de restauração baseiam-se em modelos matemáticos que representam a física de aquisição do sistema. As redes neurais convolucionais (CNN) são capazes de aprender a partir de dados e têm apresentado progresso substancial nos últimos anos. Este trabalho propõe uma estrutura híbrida de aprendizagem profunda baseada em modelo (MBDL) para a restauração de imagens DBT adquiridas com doses reduzidas de radiação, beneficiando-se das vantagens de ambos os campos. Especificamente, nossa hipótese é que a combinação de modelos matemáticos conhecidos com modelos baseados em dados (DB) pode melhorar os resultados de abordagens puramente MB ou DB. Primeiramente, investigamos a aplicação de uma arquitetura CNN para restaurar imagens FFDM, avaliando também a influência de diversas funções de custo e diversas estratégias de treinamento. Em segundo lugar, apresentamos uma abordagem MBDL inspirada em um framework projetado para restaurar imagens mamográficas de baixa dose. Usamos um transformada de estabilização de variância (VST) e parâmetros conhecidos relacionados ao sistema para introduzir conhecimentos a priori implementados como camadas da rede neural. Três arquiteturas diferentes foram testadas e resultaram em um melhor desempenho em comparação com abordagens exclusivamente baseadas em dados. Finalmente, também propomos um método MBDL para restaurar imagens mamográficas corrompidas com ruído correlacionado espacialmente. Embora seja necessária uma validação adicional, os resultados preliminares indicam que o MBDL pode ser adequado para esta tarefa. Em conclusão, a sinergia entre métodos MB e abordagens de DB tem grande potencial a ser explorada, demonstrado pelos melhores resultados em relação aos modelos que não se beneficiam desses conhecimentos a priori.Biblioteca Digitais de Teses e Dissertações da USPBorges, Lucas RodriguesVieira, Marcelo Andrade da CostaVimieiro, Rodrigo de Barros2023-11-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-03012024-114253Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Model-based deep learning to restore low-dose digital breast tomosynthesis images Aprendizagem profunda baseada em modelo para restauração de imagens de tomossíntese digital mamária de baixa dose |
title |
Model-based deep learning to restore low-dose digital breast tomosynthesis images |
spellingShingle |
Model-based deep learning to restore low-dose digital breast tomosynthesis images Vimieiro, Rodrigo de Barros aprendizado profundo aprendizado profundo baseado em modelo artificial neural networks convolutional neural networks deep learning digital breast tomosynthesis image restoration model-based deep learning redes neurais artificiais redes neurais convolucionais restauração de imagens tomossíntese digital mamária |
title_short |
Model-based deep learning to restore low-dose digital breast tomosynthesis images |
title_full |
Model-based deep learning to restore low-dose digital breast tomosynthesis images |
title_fullStr |
Model-based deep learning to restore low-dose digital breast tomosynthesis images |
title_full_unstemmed |
Model-based deep learning to restore low-dose digital breast tomosynthesis images |
title_sort |
Model-based deep learning to restore low-dose digital breast tomosynthesis images |
author |
Vimieiro, Rodrigo de Barros |
author_facet |
Vimieiro, Rodrigo de Barros |
author_role |
author |
dc.contributor.none.fl_str_mv |
Borges, Lucas Rodrigues Vieira, Marcelo Andrade da Costa |
dc.contributor.author.fl_str_mv |
Vimieiro, Rodrigo de Barros |
dc.subject.por.fl_str_mv |
aprendizado profundo aprendizado profundo baseado em modelo artificial neural networks convolutional neural networks deep learning digital breast tomosynthesis image restoration model-based deep learning redes neurais artificiais redes neurais convolucionais restauração de imagens tomossíntese digital mamária |
topic |
aprendizado profundo aprendizado profundo baseado em modelo artificial neural networks convolutional neural networks deep learning digital breast tomosynthesis image restoration model-based deep learning redes neurais artificiais redes neurais convolucionais restauração de imagens tomossíntese digital mamária |
description |
Digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) are the most commonly used exams for breast cancer screening. In these systems, achieving high image quality is crucial for radiologists to detect the earliest signs of breast cancer and improve the patient\'s prognosis. The radiation dose is also a concern, given that these systems employ ionizing radiation. While current systems operate within safe radiation margins, there is a growing desire to minimize radiation dose without compromising image quality. To address this challenge, image restoration techniques have emerged as valuable tools to enhance image quality from low-dose (LD) acquisitions. Traditional restoration methods rely on mathematical models that represent the underlying physics of the acquisition system. Convolutional neural networks (CNN), employing modern deep learning (DL) techniques, are capable of learning the image restoration task from data and have exhibited substantial progress in recent years. This work proposes a hybrid model-based deep learning (MBDL) framework for the restoration of DBT images acquired with reduced radiation doses, benefiting from the advantages of both fields. Specifically, our hypothesis is that the combination of known mathematical models with data-based (DB) models can improve the results of purely MB or DB approaches. First, we investigate the application of a CNN architecture to restore FFDM images, also evaluating the influence of various loss functions and diverse training strategies. Second, we introduce an MBDL approach inspired by a pipeline designed to restore LD mammographic images. We use a variance stabilization transformation (VST) and known system-related parameters to introduce priors implemented as neural network layers. Considering a Poisson-Gaussian noise model, this framework operates within a VST domain, where the noise becomes approximately Gaussian, signal-independent, and with unity variance, enhancing the stability and simplicity of the learning process. Moreover, we propose a bias-residual noise loss function to control the final noise characteristics. Three different CNN architectures were tested and resulted in better performance compared with solely DB approaches. Finally, we also propose an MBDL method to restore mammographic images corrupted with spatially correlated noise. Although further validation is necessary, preliminary results indicate that the MBDL may be suitable for this task. In conclusion, the synergy of MB methods and DB approaches has great potential to be explored within the DL domain, demonstrated by the improved results over models that do not benefit from those priors. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18152/tde-03012024-114253/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256482961162240 |