Directed wavelet covariance for locally stationary processes

Detalhes bibliográficos
Autor(a) principal: Lopes, Kim Samejima Mascarenhas
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/
Resumo: The main goal of this study is to propose a methodology that measures directed relations between locally stationary processes. Unlike stationary processes, locally stationary processes may present sudden pattern changes and have local characteristics in specific intervals. This behavior causes instability in measures based on Fourier transforms. The relevance of this study relies on considering these processes and propose robust methodologies that are not affected by outliers, sudden pattern changes or local behavior. We start reviewing the Partial Directed Coherence (PDC) and the Wavelet Coherence. PDC measures the directed relation between components of a multivariate stationary Vector Autoregressive (VAR) model in the frequency domain, while Wavelet Coherence is based on complex wavelets decomposition. We then propose a causal wavelet decomposition of the covariance structure for bivariate locally stationary processes: the Directed Wavelet Covariance (DWC). Compared to Fourier-based quantities, wavelet-based estimators are more appropriate for non-stationary processes and processes with local patterns, outliers and rapid regime changes like in EEG experiments with the introduction of stimuli. We then propose its estimators and calculate its expectation and analyze its variance. Next we propose a decomposition for the variance of multivariate processes with more than two components: the Partial Directed Wavelet Covariance (pDWC). Considering a N-variate locally stationary process, the pDWC calculates the Directed Wavelet Covariance of X_1(t) with X_2(t) eliminating the effect of the other components X_3(t), ... ,X_N(t). We propose two approaches to this situation. First we filter the multivariate process to remove all the exogenous influences and then we calculate the directed relation between the components. In the second case, as in Partial Directed Coherence, we consider the multivariate process as a time-varying Vector Autoregressive Model (tv-VAR) and use its coefficients in the decomposition of the covariance function to isolate the effects of the other components. We also compare results of the PDC, Wavelet Coherence and Directed Wavelet Covariance with simulated data. Finally, we present an application of the proposed Directed Wavelet Covariance and Partial Directed Wavelet Covariance on EEG data. Simulation results show that the proposed measures capture the simulated relations. The pDWC with linear filter has shown more stable estimations than the proposed pDWC considering the tv-VAR. Future studies will discuss the DWC\'s and pDWC\'s asymptotic distributions and significance tests. The proposed Directed Wavelet Covariance decomposition is a different approach to deal with non-stationary processes in the context of causality. The use of wavelets is a gain and adds to the number of studies that can be addressed when Fourier transform does not apply. The pDWC is an alternative for multivariate processes and it removes linear influences from observed external components.
id USP_79f6928e6425d47f7193e37d7dcebe50
oai_identifier_str oai:teses.usp.br:tde-14032018-174950
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Directed wavelet covariance for locally stationary processesCovariância direcionada de ondaletas para processos localmente estacionáriosCoerência direcionadaCovariância de ondaletasCross spectrumDirected coherenceEspectro cruzadoLocally stationary processesProcessos localmente estacionáriosSéries temporaisTime seriesWavelet covarianceThe main goal of this study is to propose a methodology that measures directed relations between locally stationary processes. Unlike stationary processes, locally stationary processes may present sudden pattern changes and have local characteristics in specific intervals. This behavior causes instability in measures based on Fourier transforms. The relevance of this study relies on considering these processes and propose robust methodologies that are not affected by outliers, sudden pattern changes or local behavior. We start reviewing the Partial Directed Coherence (PDC) and the Wavelet Coherence. PDC measures the directed relation between components of a multivariate stationary Vector Autoregressive (VAR) model in the frequency domain, while Wavelet Coherence is based on complex wavelets decomposition. We then propose a causal wavelet decomposition of the covariance structure for bivariate locally stationary processes: the Directed Wavelet Covariance (DWC). Compared to Fourier-based quantities, wavelet-based estimators are more appropriate for non-stationary processes and processes with local patterns, outliers and rapid regime changes like in EEG experiments with the introduction of stimuli. We then propose its estimators and calculate its expectation and analyze its variance. Next we propose a decomposition for the variance of multivariate processes with more than two components: the Partial Directed Wavelet Covariance (pDWC). Considering a N-variate locally stationary process, the pDWC calculates the Directed Wavelet Covariance of X_1(t) with X_2(t) eliminating the effect of the other components X_3(t), ... ,X_N(t). We propose two approaches to this situation. First we filter the multivariate process to remove all the exogenous influences and then we calculate the directed relation between the components. In the second case, as in Partial Directed Coherence, we consider the multivariate process as a time-varying Vector Autoregressive Model (tv-VAR) and use its coefficients in the decomposition of the covariance function to isolate the effects of the other components. We also compare results of the PDC, Wavelet Coherence and Directed Wavelet Covariance with simulated data. Finally, we present an application of the proposed Directed Wavelet Covariance and Partial Directed Wavelet Covariance on EEG data. Simulation results show that the proposed measures capture the simulated relations. The pDWC with linear filter has shown more stable estimations than the proposed pDWC considering the tv-VAR. Future studies will discuss the DWC\'s and pDWC\'s asymptotic distributions and significance tests. The proposed Directed Wavelet Covariance decomposition is a different approach to deal with non-stationary processes in the context of causality. The use of wavelets is a gain and adds to the number of studies that can be addressed when Fourier transform does not apply. The pDWC is an alternative for multivariate processes and it removes linear influences from observed external components.O objetivo deste trabalho é propor uma metodologia para mensurar o impacto direcionado entre processos localmente estacionários. Diferente de processos estacionários, processos localmente estacionários podem apresentar mudanças bruscas e características específicas em determinados intervalos. Tal comportamento pode causar instabilidade em medidas baseadas na transformada de Fourier. A importância deste estudo se dá em englobar processos com tais características, propondo metodologias robustas que não são afetadas pela existência de mudanças bruscas, pontos discrepantes e comportamentos locais. Inicialmente apresentamos conceitos já existentes na literatura, como a Coerência Parcial Direcionada (PDC) e a Coerência de Ondaletas. A PDC mede o impacto direcionado entre componentes de um modelo vetorial autoregressivo (VAR) no domínio da frequência. A coerência de ondaletas é baseada em transformadas complexas de ondaletas. Propomos então uma decomposição no domínio de ondaletas para a estrutura de covariância de processos bivariados localmente estacionários: a Covariância Direcionada de Ondaletas (DWC). Em comparação com as quantidades baseadas na tranformada Fourier, os estimadores baseados em ondaletas são mais apropriados para processos não estacionários com padrões locais, pontos discrepantes ou mudanças rápidas de regime, como em experimentos de eletroencefalograma (EEG) com a introdução de estímulo. Ainda, propomos um estimador para a DWC, calculamos a esperança deste estimador e avaliamos sua variância. Em seguida, propomos uma quantidade análoga à DWC para processos multivariados com mais de duas componentes: a Covariância Parcial Direcionada de Ondaletas (pDWC). Considerando um processo N-variado localmente estacionário, a pDWC calcula a Covariância Direcionada de Ondaletas entre X_1(t) e X_2(t) eliminando o efeito das outras componentes X_3(t), ... , X_N(t). Propomos duas abordagens para a pDWC: na primeira, a pDWC é calculada após a aplicação de um filtro linear que remove o efeito das variáveis exógenas. No segundo caso, a exemplo da Coerência Parcial Direcionada, consideramos o processo multivariado como um Modelo Autoregressivo de Vetorial variante no tempo (tv-VAR) e usamos seus coeficientes na decomposição da função de covariância para isolar os efeitos das demais componentes. Também comparamos os resultados da PDC, Coerência de Ondaletas e Covariância Direcionada de Ondaletas com dados simulados. Por fim, apresentamos uma aplicação da DWC e da pDWC em dados de EEG. Identificamos nas simulações que tanto as medidas já existentes na literatura quanto as quantidades propostas identificaram as relações simuladas. A pDWC proposta com filtros lineares apresentou estimações mais estáveis do que a pDWC considerando os modelos tv-VAR. Estudos futuros discutirão as propriedades assintóticas e testes de significância da DWC e pDWC.Biblioteca Digitais de Teses e Dissertações da USPMorettin, Pedro AlbertoLopes, Kim Samejima Mascarenhas2018-03-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-15T17:06:03Zoai:teses.usp.br:tde-14032018-174950Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T17:06:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Directed wavelet covariance for locally stationary processes
Covariância direcionada de ondaletas para processos localmente estacionários
title Directed wavelet covariance for locally stationary processes
spellingShingle Directed wavelet covariance for locally stationary processes
Lopes, Kim Samejima Mascarenhas
Coerência direcionada
Covariância de ondaletas
Cross spectrum
Directed coherence
Espectro cruzado
Locally stationary processes
Processos localmente estacionários
Séries temporais
Time series
Wavelet covariance
title_short Directed wavelet covariance for locally stationary processes
title_full Directed wavelet covariance for locally stationary processes
title_fullStr Directed wavelet covariance for locally stationary processes
title_full_unstemmed Directed wavelet covariance for locally stationary processes
title_sort Directed wavelet covariance for locally stationary processes
author Lopes, Kim Samejima Mascarenhas
author_facet Lopes, Kim Samejima Mascarenhas
author_role author
dc.contributor.none.fl_str_mv Morettin, Pedro Alberto
dc.contributor.author.fl_str_mv Lopes, Kim Samejima Mascarenhas
dc.subject.por.fl_str_mv Coerência direcionada
Covariância de ondaletas
Cross spectrum
Directed coherence
Espectro cruzado
Locally stationary processes
Processos localmente estacionários
Séries temporais
Time series
Wavelet covariance
topic Coerência direcionada
Covariância de ondaletas
Cross spectrum
Directed coherence
Espectro cruzado
Locally stationary processes
Processos localmente estacionários
Séries temporais
Time series
Wavelet covariance
description The main goal of this study is to propose a methodology that measures directed relations between locally stationary processes. Unlike stationary processes, locally stationary processes may present sudden pattern changes and have local characteristics in specific intervals. This behavior causes instability in measures based on Fourier transforms. The relevance of this study relies on considering these processes and propose robust methodologies that are not affected by outliers, sudden pattern changes or local behavior. We start reviewing the Partial Directed Coherence (PDC) and the Wavelet Coherence. PDC measures the directed relation between components of a multivariate stationary Vector Autoregressive (VAR) model in the frequency domain, while Wavelet Coherence is based on complex wavelets decomposition. We then propose a causal wavelet decomposition of the covariance structure for bivariate locally stationary processes: the Directed Wavelet Covariance (DWC). Compared to Fourier-based quantities, wavelet-based estimators are more appropriate for non-stationary processes and processes with local patterns, outliers and rapid regime changes like in EEG experiments with the introduction of stimuli. We then propose its estimators and calculate its expectation and analyze its variance. Next we propose a decomposition for the variance of multivariate processes with more than two components: the Partial Directed Wavelet Covariance (pDWC). Considering a N-variate locally stationary process, the pDWC calculates the Directed Wavelet Covariance of X_1(t) with X_2(t) eliminating the effect of the other components X_3(t), ... ,X_N(t). We propose two approaches to this situation. First we filter the multivariate process to remove all the exogenous influences and then we calculate the directed relation between the components. In the second case, as in Partial Directed Coherence, we consider the multivariate process as a time-varying Vector Autoregressive Model (tv-VAR) and use its coefficients in the decomposition of the covariance function to isolate the effects of the other components. We also compare results of the PDC, Wavelet Coherence and Directed Wavelet Covariance with simulated data. Finally, we present an application of the proposed Directed Wavelet Covariance and Partial Directed Wavelet Covariance on EEG data. Simulation results show that the proposed measures capture the simulated relations. The pDWC with linear filter has shown more stable estimations than the proposed pDWC considering the tv-VAR. Future studies will discuss the DWC\'s and pDWC\'s asymptotic distributions and significance tests. The proposed Directed Wavelet Covariance decomposition is a different approach to deal with non-stationary processes in the context of causality. The use of wavelets is a gain and adds to the number of studies that can be addressed when Fourier transform does not apply. The pDWC is an alternative for multivariate processes and it removes linear influences from observed external components.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256959876595712