Directed wavelet covariance for locally stationary processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/ |
Resumo: | The main goal of this study is to propose a methodology that measures directed relations between locally stationary processes. Unlike stationary processes, locally stationary processes may present sudden pattern changes and have local characteristics in specific intervals. This behavior causes instability in measures based on Fourier transforms. The relevance of this study relies on considering these processes and propose robust methodologies that are not affected by outliers, sudden pattern changes or local behavior. We start reviewing the Partial Directed Coherence (PDC) and the Wavelet Coherence. PDC measures the directed relation between components of a multivariate stationary Vector Autoregressive (VAR) model in the frequency domain, while Wavelet Coherence is based on complex wavelets decomposition. We then propose a causal wavelet decomposition of the covariance structure for bivariate locally stationary processes: the Directed Wavelet Covariance (DWC). Compared to Fourier-based quantities, wavelet-based estimators are more appropriate for non-stationary processes and processes with local patterns, outliers and rapid regime changes like in EEG experiments with the introduction of stimuli. We then propose its estimators and calculate its expectation and analyze its variance. Next we propose a decomposition for the variance of multivariate processes with more than two components: the Partial Directed Wavelet Covariance (pDWC). Considering a N-variate locally stationary process, the pDWC calculates the Directed Wavelet Covariance of X_1(t) with X_2(t) eliminating the effect of the other components X_3(t), ... ,X_N(t). We propose two approaches to this situation. First we filter the multivariate process to remove all the exogenous influences and then we calculate the directed relation between the components. In the second case, as in Partial Directed Coherence, we consider the multivariate process as a time-varying Vector Autoregressive Model (tv-VAR) and use its coefficients in the decomposition of the covariance function to isolate the effects of the other components. We also compare results of the PDC, Wavelet Coherence and Directed Wavelet Covariance with simulated data. Finally, we present an application of the proposed Directed Wavelet Covariance and Partial Directed Wavelet Covariance on EEG data. Simulation results show that the proposed measures capture the simulated relations. The pDWC with linear filter has shown more stable estimations than the proposed pDWC considering the tv-VAR. Future studies will discuss the DWC\'s and pDWC\'s asymptotic distributions and significance tests. The proposed Directed Wavelet Covariance decomposition is a different approach to deal with non-stationary processes in the context of causality. The use of wavelets is a gain and adds to the number of studies that can be addressed when Fourier transform does not apply. The pDWC is an alternative for multivariate processes and it removes linear influences from observed external components. |
id |
USP_79f6928e6425d47f7193e37d7dcebe50 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14032018-174950 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Directed wavelet covariance for locally stationary processesCovariância direcionada de ondaletas para processos localmente estacionáriosCoerência direcionadaCovariância de ondaletasCross spectrumDirected coherenceEspectro cruzadoLocally stationary processesProcessos localmente estacionáriosSéries temporaisTime seriesWavelet covarianceThe main goal of this study is to propose a methodology that measures directed relations between locally stationary processes. Unlike stationary processes, locally stationary processes may present sudden pattern changes and have local characteristics in specific intervals. This behavior causes instability in measures based on Fourier transforms. The relevance of this study relies on considering these processes and propose robust methodologies that are not affected by outliers, sudden pattern changes or local behavior. We start reviewing the Partial Directed Coherence (PDC) and the Wavelet Coherence. PDC measures the directed relation between components of a multivariate stationary Vector Autoregressive (VAR) model in the frequency domain, while Wavelet Coherence is based on complex wavelets decomposition. We then propose a causal wavelet decomposition of the covariance structure for bivariate locally stationary processes: the Directed Wavelet Covariance (DWC). Compared to Fourier-based quantities, wavelet-based estimators are more appropriate for non-stationary processes and processes with local patterns, outliers and rapid regime changes like in EEG experiments with the introduction of stimuli. We then propose its estimators and calculate its expectation and analyze its variance. Next we propose a decomposition for the variance of multivariate processes with more than two components: the Partial Directed Wavelet Covariance (pDWC). Considering a N-variate locally stationary process, the pDWC calculates the Directed Wavelet Covariance of X_1(t) with X_2(t) eliminating the effect of the other components X_3(t), ... ,X_N(t). We propose two approaches to this situation. First we filter the multivariate process to remove all the exogenous influences and then we calculate the directed relation between the components. In the second case, as in Partial Directed Coherence, we consider the multivariate process as a time-varying Vector Autoregressive Model (tv-VAR) and use its coefficients in the decomposition of the covariance function to isolate the effects of the other components. We also compare results of the PDC, Wavelet Coherence and Directed Wavelet Covariance with simulated data. Finally, we present an application of the proposed Directed Wavelet Covariance and Partial Directed Wavelet Covariance on EEG data. Simulation results show that the proposed measures capture the simulated relations. The pDWC with linear filter has shown more stable estimations than the proposed pDWC considering the tv-VAR. Future studies will discuss the DWC\'s and pDWC\'s asymptotic distributions and significance tests. The proposed Directed Wavelet Covariance decomposition is a different approach to deal with non-stationary processes in the context of causality. The use of wavelets is a gain and adds to the number of studies that can be addressed when Fourier transform does not apply. The pDWC is an alternative for multivariate processes and it removes linear influences from observed external components.O objetivo deste trabalho é propor uma metodologia para mensurar o impacto direcionado entre processos localmente estacionários. Diferente de processos estacionários, processos localmente estacionários podem apresentar mudanças bruscas e características específicas em determinados intervalos. Tal comportamento pode causar instabilidade em medidas baseadas na transformada de Fourier. A importância deste estudo se dá em englobar processos com tais características, propondo metodologias robustas que não são afetadas pela existência de mudanças bruscas, pontos discrepantes e comportamentos locais. Inicialmente apresentamos conceitos já existentes na literatura, como a Coerência Parcial Direcionada (PDC) e a Coerência de Ondaletas. A PDC mede o impacto direcionado entre componentes de um modelo vetorial autoregressivo (VAR) no domínio da frequência. A coerência de ondaletas é baseada em transformadas complexas de ondaletas. Propomos então uma decomposição no domínio de ondaletas para a estrutura de covariância de processos bivariados localmente estacionários: a Covariância Direcionada de Ondaletas (DWC). Em comparação com as quantidades baseadas na tranformada Fourier, os estimadores baseados em ondaletas são mais apropriados para processos não estacionários com padrões locais, pontos discrepantes ou mudanças rápidas de regime, como em experimentos de eletroencefalograma (EEG) com a introdução de estímulo. Ainda, propomos um estimador para a DWC, calculamos a esperança deste estimador e avaliamos sua variância. Em seguida, propomos uma quantidade análoga à DWC para processos multivariados com mais de duas componentes: a Covariância Parcial Direcionada de Ondaletas (pDWC). Considerando um processo N-variado localmente estacionário, a pDWC calcula a Covariância Direcionada de Ondaletas entre X_1(t) e X_2(t) eliminando o efeito das outras componentes X_3(t), ... , X_N(t). Propomos duas abordagens para a pDWC: na primeira, a pDWC é calculada após a aplicação de um filtro linear que remove o efeito das variáveis exógenas. No segundo caso, a exemplo da Coerência Parcial Direcionada, consideramos o processo multivariado como um Modelo Autoregressivo de Vetorial variante no tempo (tv-VAR) e usamos seus coeficientes na decomposição da função de covariância para isolar os efeitos das demais componentes. Também comparamos os resultados da PDC, Coerência de Ondaletas e Covariância Direcionada de Ondaletas com dados simulados. Por fim, apresentamos uma aplicação da DWC e da pDWC em dados de EEG. Identificamos nas simulações que tanto as medidas já existentes na literatura quanto as quantidades propostas identificaram as relações simuladas. A pDWC proposta com filtros lineares apresentou estimações mais estáveis do que a pDWC considerando os modelos tv-VAR. Estudos futuros discutirão as propriedades assintóticas e testes de significância da DWC e pDWC.Biblioteca Digitais de Teses e Dissertações da USPMorettin, Pedro AlbertoLopes, Kim Samejima Mascarenhas2018-03-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-15T17:06:03Zoai:teses.usp.br:tde-14032018-174950Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T17:06:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Directed wavelet covariance for locally stationary processes Covariância direcionada de ondaletas para processos localmente estacionários |
title |
Directed wavelet covariance for locally stationary processes |
spellingShingle |
Directed wavelet covariance for locally stationary processes Lopes, Kim Samejima Mascarenhas Coerência direcionada Covariância de ondaletas Cross spectrum Directed coherence Espectro cruzado Locally stationary processes Processos localmente estacionários Séries temporais Time series Wavelet covariance |
title_short |
Directed wavelet covariance for locally stationary processes |
title_full |
Directed wavelet covariance for locally stationary processes |
title_fullStr |
Directed wavelet covariance for locally stationary processes |
title_full_unstemmed |
Directed wavelet covariance for locally stationary processes |
title_sort |
Directed wavelet covariance for locally stationary processes |
author |
Lopes, Kim Samejima Mascarenhas |
author_facet |
Lopes, Kim Samejima Mascarenhas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Morettin, Pedro Alberto |
dc.contributor.author.fl_str_mv |
Lopes, Kim Samejima Mascarenhas |
dc.subject.por.fl_str_mv |
Coerência direcionada Covariância de ondaletas Cross spectrum Directed coherence Espectro cruzado Locally stationary processes Processos localmente estacionários Séries temporais Time series Wavelet covariance |
topic |
Coerência direcionada Covariância de ondaletas Cross spectrum Directed coherence Espectro cruzado Locally stationary processes Processos localmente estacionários Séries temporais Time series Wavelet covariance |
description |
The main goal of this study is to propose a methodology that measures directed relations between locally stationary processes. Unlike stationary processes, locally stationary processes may present sudden pattern changes and have local characteristics in specific intervals. This behavior causes instability in measures based on Fourier transforms. The relevance of this study relies on considering these processes and propose robust methodologies that are not affected by outliers, sudden pattern changes or local behavior. We start reviewing the Partial Directed Coherence (PDC) and the Wavelet Coherence. PDC measures the directed relation between components of a multivariate stationary Vector Autoregressive (VAR) model in the frequency domain, while Wavelet Coherence is based on complex wavelets decomposition. We then propose a causal wavelet decomposition of the covariance structure for bivariate locally stationary processes: the Directed Wavelet Covariance (DWC). Compared to Fourier-based quantities, wavelet-based estimators are more appropriate for non-stationary processes and processes with local patterns, outliers and rapid regime changes like in EEG experiments with the introduction of stimuli. We then propose its estimators and calculate its expectation and analyze its variance. Next we propose a decomposition for the variance of multivariate processes with more than two components: the Partial Directed Wavelet Covariance (pDWC). Considering a N-variate locally stationary process, the pDWC calculates the Directed Wavelet Covariance of X_1(t) with X_2(t) eliminating the effect of the other components X_3(t), ... ,X_N(t). We propose two approaches to this situation. First we filter the multivariate process to remove all the exogenous influences and then we calculate the directed relation between the components. In the second case, as in Partial Directed Coherence, we consider the multivariate process as a time-varying Vector Autoregressive Model (tv-VAR) and use its coefficients in the decomposition of the covariance function to isolate the effects of the other components. We also compare results of the PDC, Wavelet Coherence and Directed Wavelet Covariance with simulated data. Finally, we present an application of the proposed Directed Wavelet Covariance and Partial Directed Wavelet Covariance on EEG data. Simulation results show that the proposed measures capture the simulated relations. The pDWC with linear filter has shown more stable estimations than the proposed pDWC considering the tv-VAR. Future studies will discuss the DWC\'s and pDWC\'s asymptotic distributions and significance tests. The proposed Directed Wavelet Covariance decomposition is a different approach to deal with non-stationary processes in the context of causality. The use of wavelets is a gain and adds to the number of studies that can be addressed when Fourier transform does not apply. The pDWC is an alternative for multivariate processes and it removes linear influences from observed external components. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-14032018-174950/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256959876595712 |