Unraveling the brain: a quantitative study of EEG classification techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01072021-132416/ |
Resumo: | The problem of EEG Classification, where one tries to identify neural conditions through electroencephalographic signal analysis, has been gathering increasing attention from the scientific community with the recent advances in EEG technology and Big Data/Machine Learning techniques. However, much of the current research on this topic presents significant methodological flaws, such as non-optimization of models hyperparameters, data leakage between train and test datasets, and poor choice of comparison baselines, among others, which render many of the obtained results dubious. Thus, it is not clear what are the state-of-the-art methods for the EEG Classification problem today, nor how they compare to one another. In this dissertation, we tackle this problem by, first, surveying methods proposed in the scientific literature which claim to achieve state-of-the-art performance while still adhering to data science and statistical guidelines that can sustain such a claim. Then, we make a quantitative comparison of these methods on four different EEG datasets. Of the 11 methods studied, we show that those based on Fourier Transforms, Wavelet Transforms, and Hjorth Parameters are the ones with the best overall performance, and can that they can be used as a strong baseline against which any new methods and analyses hereafter proposed in the EEG Classification field should be compared. |
id |
USP_7a504126a2528563aa026424550e0eb4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01072021-132416 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Unraveling the brain: a quantitative study of EEG classification techniquesDesvendando o cérebro: um estudo quantitativo de técnicas para classificação de EEGAprendizado de máquinaClassificação de EEGEEG classificationFourier transformMachine learningNeural networksRedes neuraisTransformada de FourierWaveletsWaveletsThe problem of EEG Classification, where one tries to identify neural conditions through electroencephalographic signal analysis, has been gathering increasing attention from the scientific community with the recent advances in EEG technology and Big Data/Machine Learning techniques. However, much of the current research on this topic presents significant methodological flaws, such as non-optimization of models hyperparameters, data leakage between train and test datasets, and poor choice of comparison baselines, among others, which render many of the obtained results dubious. Thus, it is not clear what are the state-of-the-art methods for the EEG Classification problem today, nor how they compare to one another. In this dissertation, we tackle this problem by, first, surveying methods proposed in the scientific literature which claim to achieve state-of-the-art performance while still adhering to data science and statistical guidelines that can sustain such a claim. Then, we make a quantitative comparison of these methods on four different EEG datasets. Of the 11 methods studied, we show that those based on Fourier Transforms, Wavelet Transforms, and Hjorth Parameters are the ones with the best overall performance, and can that they can be used as a strong baseline against which any new methods and analyses hereafter proposed in the EEG Classification field should be compared.O problema de classificação de EEG, onde procura-se identificar estados mentais através da análise de sinais eletroencefalográficos, vem ganhando crescente atenção da comunidade científica com os recentes avanços nas tecnologias de EEG e nas técnicas de Big Data e Machine Learning. No entanto, muitas das pesquisas atuais sendo realizadas sobre esse assunto apresentam falhas metodológicas significativas, como a não otimização de hiperparâmetros de modelos, vazamento de informação entre bancos de dados de treino e teste, escolhas equivocadas de referências de comparação, entre outros, o que torna duvidosos muitos dos resultados obtidos. Por esse motivo, não é claro quais são os melhores métodos para o problema da classificação de EEG atualmente, nem como eles se comparam entre si. Nesta dissertação, abordamos esse problema fazendo, primeiramente, um levantamento de métodos propostos na literatura científica que alegam resultados equivalentes ao estado da arte, e que tenham aderido a diretrizes estatísticas e da ciência de dados que possam sustentar tal afirmação. Em seguida, realizamos uma comparação quantitativa desses métodos em 4 bancos de dados de EEG diferentes. Dos 11 métodos estudados, mostramos que aqueles baseados no uso de Transformadas de Fourier, Transformadas Wavelet, e Parâmetros de Hjorth são os que apresentam melhor desempenho geral, e podem ser usados como uma forte referência contra a qual se comparar quaisquer novos métodos e análises propostos futuramente no campo de classificação de EEGBiblioteca Digitais de Teses e Dissertações da USPLeonardi, Florencia GracielaAlípio, Lênon Guimarães Silva2021-04-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-01072021-132416/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-14T21:23:02Zoai:teses.usp.br:tde-01072021-132416Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-14T21:23:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Unraveling the brain: a quantitative study of EEG classification techniques Desvendando o cérebro: um estudo quantitativo de técnicas para classificação de EEG |
title |
Unraveling the brain: a quantitative study of EEG classification techniques |
spellingShingle |
Unraveling the brain: a quantitative study of EEG classification techniques Alípio, Lênon Guimarães Silva Aprendizado de máquina Classificação de EEG EEG classification Fourier transform Machine learning Neural networks Redes neurais Transformada de Fourier Wavelets Wavelets |
title_short |
Unraveling the brain: a quantitative study of EEG classification techniques |
title_full |
Unraveling the brain: a quantitative study of EEG classification techniques |
title_fullStr |
Unraveling the brain: a quantitative study of EEG classification techniques |
title_full_unstemmed |
Unraveling the brain: a quantitative study of EEG classification techniques |
title_sort |
Unraveling the brain: a quantitative study of EEG classification techniques |
author |
Alípio, Lênon Guimarães Silva |
author_facet |
Alípio, Lênon Guimarães Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Leonardi, Florencia Graciela |
dc.contributor.author.fl_str_mv |
Alípio, Lênon Guimarães Silva |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Classificação de EEG EEG classification Fourier transform Machine learning Neural networks Redes neurais Transformada de Fourier Wavelets Wavelets |
topic |
Aprendizado de máquina Classificação de EEG EEG classification Fourier transform Machine learning Neural networks Redes neurais Transformada de Fourier Wavelets Wavelets |
description |
The problem of EEG Classification, where one tries to identify neural conditions through electroencephalographic signal analysis, has been gathering increasing attention from the scientific community with the recent advances in EEG technology and Big Data/Machine Learning techniques. However, much of the current research on this topic presents significant methodological flaws, such as non-optimization of models hyperparameters, data leakage between train and test datasets, and poor choice of comparison baselines, among others, which render many of the obtained results dubious. Thus, it is not clear what are the state-of-the-art methods for the EEG Classification problem today, nor how they compare to one another. In this dissertation, we tackle this problem by, first, surveying methods proposed in the scientific literature which claim to achieve state-of-the-art performance while still adhering to data science and statistical guidelines that can sustain such a claim. Then, we make a quantitative comparison of these methods on four different EEG datasets. Of the 11 methods studied, we show that those based on Fourier Transforms, Wavelet Transforms, and Hjorth Parameters are the ones with the best overall performance, and can that they can be used as a strong baseline against which any new methods and analyses hereafter proposed in the EEG Classification field should be compared. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01072021-132416/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01072021-132416/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256580749262848 |