Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11146/tde-03052016-175553/ |
Resumo: | Phytoplasmas are bacteria with a persistent propagative transmission by insect vectors that generates direct and indirect interactions among them. In order to understand these interactions for maize bushy stunt phytoplasma (MBSP) and the leafhopper vector Dalbulus maidis (Hemiptera: Cicadellidae), two research lines were addressed. The first one aimed to determine the indirect effects of maize infection by MBSP on some biological and behavioral parameters of the vector, whereas a second line investigated direct interactions of the phytoplasma with D. maidis during its movement through the vector body following acquisition from plants, and associated microbiota. Indirect effects were investigated in choice experiments in which alighting and oviposition preferences by D. maidis were compared on healthy vs. MBSP-infected plants with variable incubation time (diseased plants with early and advanced symptoms, or still asymptomatic). Likewise, indirect effect of MBSP on the D. maidis biology was determined in two life table experiments in which the vector was reared on healthy vs. MBSP-infected plants expressing advanced disease symptoms or still asymptomatic. Choice experiments showed that alighting and oviposition preferences of D. maidis on MBSP-infected plants compared to healthy plants depend on the pathogen incubation period in the plant. The leafhopper preferred MBSP-infected plants over healthy ones during the asymptomatic phase of the disease, but rejected infected plants with advanced symptoms. The vector was able to acquire MBSP from asymptomatic infected plants shortly (3 days) after inoculation, but transmission efficiency increased when acquisition occurred at later stages of the pathogen incubation period (≥14 days) in the source plants and the test plants showed disease symptoms faster. These results suggest that MBSP modulates D. maidis preference for asymptomatic infected plants in the early stages of the crop, allowing rapid spread of this pathogen. Maize infection by the phytoplasma had a neutral effect on most life table parameters of D. maidis; a lower net reproductivity rate (Ro) was observed in the cohort reared on MBSP-infected plants with advanced symptoms, which was compensated to some extent by a higher sexual ratio. MBSP acquisition by all vector nymphal stadia was confirmed by PCR, and the pathogen as detected in both male and female reproductive organs. Concerning direct MBSP-vector interactions, transmission electron microscopy analyses showed phytoplasma-like cells in the midgut lumen, microvilli and epithelial cells, suggesting that MBSP enters the epithelium midgut through the microvilli wall. Within the epithelial cells, mitochondria and bacteria-like cells (possibly endosymbionts) were observed together with masses of phythoplasma-like cells. In the hemocoel, phytoplasma-like cells grouped into a matrix were also observed in association with bacteria-like cells similar to those observed in the midgut epithelium. Similar associations were found in the salivary gland. Interestingly, in-situ hybridization (FISH) technique revealed a variation in diversity and abundance of the microbiota in intestine and salivary glands of D. maidis adults over time after MBSP acquisition from plants. Sulcia sp., Cardinium sp. and eubacteria increased their abundance over time, whereas Rickettsia sp. decreased. The frequent association of the vector microbiota with the phytoplasma in some tissues of D. maidis suggests that endosymbiotic bacteria may play some role in MBSP-vector interactions. |
id |
USP_7ad5001c05ecb527cbf84608bf93d926 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03052016-175553 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiotaInterações de \'maize bushy stunt phytoplasma\' com a cigarrinha vetora Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) e microbiota associadaCigarrinha-do-milhoCorn leafhopperEndossimbiontesEndosymbiontsEnfezamento vermelhoHost preferenceMaize bushy stunt phytoplasmaPreferência hospedeiraUltraestruturaUltrastructurePhytoplasmas are bacteria with a persistent propagative transmission by insect vectors that generates direct and indirect interactions among them. In order to understand these interactions for maize bushy stunt phytoplasma (MBSP) and the leafhopper vector Dalbulus maidis (Hemiptera: Cicadellidae), two research lines were addressed. The first one aimed to determine the indirect effects of maize infection by MBSP on some biological and behavioral parameters of the vector, whereas a second line investigated direct interactions of the phytoplasma with D. maidis during its movement through the vector body following acquisition from plants, and associated microbiota. Indirect effects were investigated in choice experiments in which alighting and oviposition preferences by D. maidis were compared on healthy vs. MBSP-infected plants with variable incubation time (diseased plants with early and advanced symptoms, or still asymptomatic). Likewise, indirect effect of MBSP on the D. maidis biology was determined in two life table experiments in which the vector was reared on healthy vs. MBSP-infected plants expressing advanced disease symptoms or still asymptomatic. Choice experiments showed that alighting and oviposition preferences of D. maidis on MBSP-infected plants compared to healthy plants depend on the pathogen incubation period in the plant. The leafhopper preferred MBSP-infected plants over healthy ones during the asymptomatic phase of the disease, but rejected infected plants with advanced symptoms. The vector was able to acquire MBSP from asymptomatic infected plants shortly (3 days) after inoculation, but transmission efficiency increased when acquisition occurred at later stages of the pathogen incubation period (≥14 days) in the source plants and the test plants showed disease symptoms faster. These results suggest that MBSP modulates D. maidis preference for asymptomatic infected plants in the early stages of the crop, allowing rapid spread of this pathogen. Maize infection by the phytoplasma had a neutral effect on most life table parameters of D. maidis; a lower net reproductivity rate (Ro) was observed in the cohort reared on MBSP-infected plants with advanced symptoms, which was compensated to some extent by a higher sexual ratio. MBSP acquisition by all vector nymphal stadia was confirmed by PCR, and the pathogen as detected in both male and female reproductive organs. Concerning direct MBSP-vector interactions, transmission electron microscopy analyses showed phytoplasma-like cells in the midgut lumen, microvilli and epithelial cells, suggesting that MBSP enters the epithelium midgut through the microvilli wall. Within the epithelial cells, mitochondria and bacteria-like cells (possibly endosymbionts) were observed together with masses of phythoplasma-like cells. In the hemocoel, phytoplasma-like cells grouped into a matrix were also observed in association with bacteria-like cells similar to those observed in the midgut epithelium. Similar associations were found in the salivary gland. Interestingly, in-situ hybridization (FISH) technique revealed a variation in diversity and abundance of the microbiota in intestine and salivary glands of D. maidis adults over time after MBSP acquisition from plants. Sulcia sp., Cardinium sp. and eubacteria increased their abundance over time, whereas Rickettsia sp. decreased. The frequent association of the vector microbiota with the phytoplasma in some tissues of D. maidis suggests that endosymbiotic bacteria may play some role in MBSP-vector interactions.Fitoplasmas são bactérias transmitidas de forma persistente propagativa por insetos vetores, havendo interações diretas e indiretas envolvendo tais organismos. Para entender algumas dessas interações no caso do enfezamento vermelho do milho, associado ao \'maize bushy stunt phytoplasma\' (MBPS) e à cigarrinha vetora Dalbulus maidis (Hemiptera: Cicadellidae), foram desenvolvidas duas linhas de trabalho. Na primeira determinou-se o efeito indireto de MBSP no comportamento e biologia do vetor, enquanto que na segunda estudaram-se as interações diretas do fitoplasma com o vetor durante sua movimentação através de órgãos internos e associação com a microbiota do inseto. O efeito indireto no comportamento foi demostrado em testes de escolha nos quais se variou o período de incubação de MBSP na planta (plantas com sintomas iniciais ou avançados da doença, e plantas infectadas assintomáticas) sobre a preferência para pouso e oviposição pelo vetor. O efeito indireto na biologia do D. maidis foi estabelecido em dois experimentos de tabela de vida, alimentando o inseto durante seu ciclo de vida em plantas de milho sadias ou plantas infectadas com o fitoplasma em dois tempos de incubação (plantas com sintomas avançados da doença e plantas infectadas assintomáticas). Os testes de escolha mostraram que a preferência de D. maidis para pouso e oviposição em plantas infectadas por MBSP em relação a plantas sadias depende do período de incubação do patógeno na planta. A cigarrinha preferiu plantas infectadas por MBSP na fase assintomática da doença, mas rejeitou plantas com sintomas avançados. Ocorreu aquisição do fitoplasma pelo vetor em plantas assintomáticas a partir de 3 dias após a inoculação, mas a eficiência de transmissão aumentou após 14 dias de incubação do patógeno na planta-fonte, e diminuiu o tempo para expressão de sintomas nas plantas-teste inoculadas. Os resultados sugerem que MBSP modula a preferência do vetor para plantas infectadas no estágio inicial da cultura de modo a permitir sua rápida disseminação. O efeito da infecção de plantas por MBSP na biologia de D. maidis mostrou ser neutro para a maioria dos parâmetros biológicos estimados; houve menor taxa líquida de reprodução (Ro), que foi compensada por maior razão sexual, para insetos criados em plantas com sintomas avançados. Verificou-se, por PCR, aquisição do fitoplasma por todos os estádios ninfais do vetor e sua presença em órgãos reprodutivos dos adultos. Por microscopia eletrônica de transmissão, observaram-se células do tipo fitoplasma no lúmen, microvilosidades e células epiteliais do mesêntero de D. maidis, sugerindo que o MBSP penetra no epitélio através das microvilosidades. No epitélio intestinal, foram observadas massas de células do tipo fitoplasma próximas a mitocôndrias e células bacterianas, possíveis endossimbiontes. Na hemocele, também foram observadas células do tipo fitoplasma agrupadas numa matriz, em associação com bactérias similares às observadas no intestino. Associações semelhantes foram observadas na glândula salivar. A técnica de FISH revelou uma variação na riqueza e abundância das espécies na da microbiota no mesêntero e glândula salivar de D. maidis em função do tempo após a aquisição de MBSP. A abundância de Sulcia sp., Cardinium sp. e eubacteria aumentou, enquanto que a de Rickettsia sp. decresceu. A associação frequente dessas bactérias com fitoplasma em alguns tecidos de D. maidis sugere que endossimbiontes possam ter um papel nas interações fitoplasma-vetor.Biblioteca Digitais de Teses e Dissertações da USPLopes, Joao Roberto SpottiGonzalez, Javier Garcia2016-01-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11146/tde-03052016-175553/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:06:18Zoai:teses.usp.br:tde-03052016-175553Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota Interações de \'maize bushy stunt phytoplasma\' com a cigarrinha vetora Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) e microbiota associada |
title |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota |
spellingShingle |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota Gonzalez, Javier Garcia Cigarrinha-do-milho Corn leafhopper Endossimbiontes Endosymbionts Enfezamento vermelho Host preference Maize bushy stunt phytoplasma Preferência hospedeira Ultraestrutura Ultrastructure |
title_short |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota |
title_full |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota |
title_fullStr |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota |
title_full_unstemmed |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota |
title_sort |
Interactions of maize bushy stunt phytoplasma with the leafhopper vector, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) and associated microbiota |
author |
Gonzalez, Javier Garcia |
author_facet |
Gonzalez, Javier Garcia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lopes, Joao Roberto Spotti |
dc.contributor.author.fl_str_mv |
Gonzalez, Javier Garcia |
dc.subject.por.fl_str_mv |
Cigarrinha-do-milho Corn leafhopper Endossimbiontes Endosymbionts Enfezamento vermelho Host preference Maize bushy stunt phytoplasma Preferência hospedeira Ultraestrutura Ultrastructure |
topic |
Cigarrinha-do-milho Corn leafhopper Endossimbiontes Endosymbionts Enfezamento vermelho Host preference Maize bushy stunt phytoplasma Preferência hospedeira Ultraestrutura Ultrastructure |
description |
Phytoplasmas are bacteria with a persistent propagative transmission by insect vectors that generates direct and indirect interactions among them. In order to understand these interactions for maize bushy stunt phytoplasma (MBSP) and the leafhopper vector Dalbulus maidis (Hemiptera: Cicadellidae), two research lines were addressed. The first one aimed to determine the indirect effects of maize infection by MBSP on some biological and behavioral parameters of the vector, whereas a second line investigated direct interactions of the phytoplasma with D. maidis during its movement through the vector body following acquisition from plants, and associated microbiota. Indirect effects were investigated in choice experiments in which alighting and oviposition preferences by D. maidis were compared on healthy vs. MBSP-infected plants with variable incubation time (diseased plants with early and advanced symptoms, or still asymptomatic). Likewise, indirect effect of MBSP on the D. maidis biology was determined in two life table experiments in which the vector was reared on healthy vs. MBSP-infected plants expressing advanced disease symptoms or still asymptomatic. Choice experiments showed that alighting and oviposition preferences of D. maidis on MBSP-infected plants compared to healthy plants depend on the pathogen incubation period in the plant. The leafhopper preferred MBSP-infected plants over healthy ones during the asymptomatic phase of the disease, but rejected infected plants with advanced symptoms. The vector was able to acquire MBSP from asymptomatic infected plants shortly (3 days) after inoculation, but transmission efficiency increased when acquisition occurred at later stages of the pathogen incubation period (≥14 days) in the source plants and the test plants showed disease symptoms faster. These results suggest that MBSP modulates D. maidis preference for asymptomatic infected plants in the early stages of the crop, allowing rapid spread of this pathogen. Maize infection by the phytoplasma had a neutral effect on most life table parameters of D. maidis; a lower net reproductivity rate (Ro) was observed in the cohort reared on MBSP-infected plants with advanced symptoms, which was compensated to some extent by a higher sexual ratio. MBSP acquisition by all vector nymphal stadia was confirmed by PCR, and the pathogen as detected in both male and female reproductive organs. Concerning direct MBSP-vector interactions, transmission electron microscopy analyses showed phytoplasma-like cells in the midgut lumen, microvilli and epithelial cells, suggesting that MBSP enters the epithelium midgut through the microvilli wall. Within the epithelial cells, mitochondria and bacteria-like cells (possibly endosymbionts) were observed together with masses of phythoplasma-like cells. In the hemocoel, phytoplasma-like cells grouped into a matrix were also observed in association with bacteria-like cells similar to those observed in the midgut epithelium. Similar associations were found in the salivary gland. Interestingly, in-situ hybridization (FISH) technique revealed a variation in diversity and abundance of the microbiota in intestine and salivary glands of D. maidis adults over time after MBSP acquisition from plants. Sulcia sp., Cardinium sp. and eubacteria increased their abundance over time, whereas Rickettsia sp. decreased. The frequent association of the vector microbiota with the phytoplasma in some tissues of D. maidis suggests that endosymbiotic bacteria may play some role in MBSP-vector interactions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11146/tde-03052016-175553/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11146/tde-03052016-175553/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256634275921920 |