Evaluation of vegetation indices from aerial images in soybean breeding

Detalhes bibliográficos
Autor(a) principal: Vianna, Mariana Silva
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/
Resumo: High throughput phenotyping (HTP) is an emerging tool that allows access and identifies simple and complex quantitative traits, accelerating genetic discoveries, and selection. Vegetation indices have been using to detect variation in the crop field, demonstrating correlation with several traits of crop performance. Thus, this study had the main goal to estimate vegetation indices and their correlation with agronomic traits in different soybean populations using RGB images derived from an unmanned aerial vehicle (UAV). Were conducted three experiments in the 2018/2019 season: RIL-C (stink bugs control), RIL-N (Without stink bugs control), and LQ (Without fertilization, soil correction, and stink bugs control) aiming to evaluate genetic resistance to the stink bug complex in soybean lineages. The genotypes were evaluated based on the following traits: Number the days to maturity (NDM), agronomic value (AV), Lodging (LOD), Plant height maturity (PHM), and grain yield (GY). A UAV system with an RGB camera coupled was used to acquire aerial photography flight over the field during the R5 stage. Was estimated the Red Green Blue Vegetation Index (RGBVI), Gren Leaf Index (GLI), Visible Atmospheric Resistant Index (VARI), Triangular Greenness Index (TGI), Normalized Green Red Difference Index (NGRDI), and canopy from the orthomosaic. Linear mixed models were used to estimate the variance of each trait using the likelihood ratio test, and the principal component analysis (PCA) was performed using the Best Linear Unbiased Predictions (BLUPs) to verify the multivariate pattern among genotypes. The results showed significant genotypic effects for the majority of the traits evaluated. High broad-sense heritability of the traits can be observed. The principal component analysis revealed that the genotypes had more agronomic performance in the experiment with control of stink bugs, also, showed a strong correlation between the traits GY and PHM, and independence between the traits LOD and NDM. There were significant correlations among the agronomic traits, vegetation indices, and canopy, that can be used for indirect selection and joint selections of the traits of the best lineages in the breeding pipeline.
id USP_7bcf40c7246500bd66e27686cc3124aa
oai_identifier_str oai:teses.usp.br:tde-12012021-102452
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Evaluation of vegetation indices from aerial images in soybean breedingAvaliação de índices de vegetação a partir de imagens aéreas no melhoramento de sojaGlicine maxGlycine maxFenotipagem de alto rendimentoHigh throughput phenotypingImagens RGBÍndices de vegetaçãoMelhoramento de plantasPlant breedingRGB imagesVegetation indexHigh throughput phenotyping (HTP) is an emerging tool that allows access and identifies simple and complex quantitative traits, accelerating genetic discoveries, and selection. Vegetation indices have been using to detect variation in the crop field, demonstrating correlation with several traits of crop performance. Thus, this study had the main goal to estimate vegetation indices and their correlation with agronomic traits in different soybean populations using RGB images derived from an unmanned aerial vehicle (UAV). Were conducted three experiments in the 2018/2019 season: RIL-C (stink bugs control), RIL-N (Without stink bugs control), and LQ (Without fertilization, soil correction, and stink bugs control) aiming to evaluate genetic resistance to the stink bug complex in soybean lineages. The genotypes were evaluated based on the following traits: Number the days to maturity (NDM), agronomic value (AV), Lodging (LOD), Plant height maturity (PHM), and grain yield (GY). A UAV system with an RGB camera coupled was used to acquire aerial photography flight over the field during the R5 stage. Was estimated the Red Green Blue Vegetation Index (RGBVI), Gren Leaf Index (GLI), Visible Atmospheric Resistant Index (VARI), Triangular Greenness Index (TGI), Normalized Green Red Difference Index (NGRDI), and canopy from the orthomosaic. Linear mixed models were used to estimate the variance of each trait using the likelihood ratio test, and the principal component analysis (PCA) was performed using the Best Linear Unbiased Predictions (BLUPs) to verify the multivariate pattern among genotypes. The results showed significant genotypic effects for the majority of the traits evaluated. High broad-sense heritability of the traits can be observed. The principal component analysis revealed that the genotypes had more agronomic performance in the experiment with control of stink bugs, also, showed a strong correlation between the traits GY and PHM, and independence between the traits LOD and NDM. There were significant correlations among the agronomic traits, vegetation indices, and canopy, that can be used for indirect selection and joint selections of the traits of the best lineages in the breeding pipeline.A fenotipagem de alto rendimento (HTP) é uma ferramenta emergente que permite acesso e identificação dos caracteres quantitativos simples e complexos, acelerando descobertas genéticas e seleção. Os índices de vegetação têm sido utilizados para detectar variações no campo, demonstrando correlação com vários caracteres importantes ao desempenho das culturas. Assim, este estudo teve como objetivo principal estimar índices de vegetação e suas correlações com caracteres agronômicos em diferentes populações de soja, utilizando imagens RGB derivadas de veículo aéreo não tripulado (UAV). Foram conduzidos três experimentos na safra 2018/2019: RIL-C (com controle de percevejos), RIL-N (sem controle de percevejos) e LQ (sem fertilização, correção do solo e controle de percevejos) com o objetivo de avaliar a resistência genética ao complexo de percevejos em linhagens de soja. Os genótipos foram avaliados com base nas seguintes caracteres: número de dias para a maturidade (NDM), valor agronômico (AV), acamamento (LOD), altura da planta na maturidade (PHM) e rendimento de grãos (GY). Um sistema UAV com uma câmera RGB acoplada foi usado para adquirir um vôo de fotografia aérea sobre o campo durante o estágio R5. Foram estimados o Índice de Vegetação Azul Verde Vermelho (RGBVI), Índice de Folha de Verde (GLI), Índice Resistente à Atmosfera Visível (VARI), Índice de Verdidão Triangular (TGI), Índice de Diferença de Verde Vermelho Normalizado (NGRDI) e dossel (Canopy) do ortomosaico. Modelos lineares mistos foram usados para estimar a variância de cada caratere usando o teste da razão de verossimilhança, e a análise de componentes principais foi realizada usando os BLUPs para verificar o padrão multivariado entre os genótipos. Os resultados mostraram efeitos genotípicos significativos para maioria dos caracteres avaliados. Pode-se observar alta herdabilidade dos caracteres. A análise dos componentes principais revelou que os genótipos apresentaram maior desempenho agronômico no experimento com controle de percevejos, além de mostrar forte correlação entre os caracteres GY e PHM e independência entre os caracteres LOD e NDM. Houve correlações significativas entre os caracteres agronômicos, índices de vegetação e dossel, que podem ser usadas para seleção indireta e seleções conjuntas dos caracteres das melhores linhagens no melhoramento de soja.Biblioteca Digitais de Teses e Dissertações da USPPinheiro, Jose BaldinVianna, Mariana Silva2020-09-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-01-14T18:19:01Zoai:teses.usp.br:tde-12012021-102452Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-01-14T18:19:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Evaluation of vegetation indices from aerial images in soybean breeding
Avaliação de índices de vegetação a partir de imagens aéreas no melhoramento de soja
title Evaluation of vegetation indices from aerial images in soybean breeding
spellingShingle Evaluation of vegetation indices from aerial images in soybean breeding
Vianna, Mariana Silva
Glicine max
Glycine max
Fenotipagem de alto rendimento
High throughput phenotyping
Imagens RGB
Índices de vegetação
Melhoramento de plantas
Plant breeding
RGB images
Vegetation index
title_short Evaluation of vegetation indices from aerial images in soybean breeding
title_full Evaluation of vegetation indices from aerial images in soybean breeding
title_fullStr Evaluation of vegetation indices from aerial images in soybean breeding
title_full_unstemmed Evaluation of vegetation indices from aerial images in soybean breeding
title_sort Evaluation of vegetation indices from aerial images in soybean breeding
author Vianna, Mariana Silva
author_facet Vianna, Mariana Silva
author_role author
dc.contributor.none.fl_str_mv Pinheiro, Jose Baldin
dc.contributor.author.fl_str_mv Vianna, Mariana Silva
dc.subject.por.fl_str_mv Glicine max
Glycine max
Fenotipagem de alto rendimento
High throughput phenotyping
Imagens RGB
Índices de vegetação
Melhoramento de plantas
Plant breeding
RGB images
Vegetation index
topic Glicine max
Glycine max
Fenotipagem de alto rendimento
High throughput phenotyping
Imagens RGB
Índices de vegetação
Melhoramento de plantas
Plant breeding
RGB images
Vegetation index
description High throughput phenotyping (HTP) is an emerging tool that allows access and identifies simple and complex quantitative traits, accelerating genetic discoveries, and selection. Vegetation indices have been using to detect variation in the crop field, demonstrating correlation with several traits of crop performance. Thus, this study had the main goal to estimate vegetation indices and their correlation with agronomic traits in different soybean populations using RGB images derived from an unmanned aerial vehicle (UAV). Were conducted three experiments in the 2018/2019 season: RIL-C (stink bugs control), RIL-N (Without stink bugs control), and LQ (Without fertilization, soil correction, and stink bugs control) aiming to evaluate genetic resistance to the stink bug complex in soybean lineages. The genotypes were evaluated based on the following traits: Number the days to maturity (NDM), agronomic value (AV), Lodging (LOD), Plant height maturity (PHM), and grain yield (GY). A UAV system with an RGB camera coupled was used to acquire aerial photography flight over the field during the R5 stage. Was estimated the Red Green Blue Vegetation Index (RGBVI), Gren Leaf Index (GLI), Visible Atmospheric Resistant Index (VARI), Triangular Greenness Index (TGI), Normalized Green Red Difference Index (NGRDI), and canopy from the orthomosaic. Linear mixed models were used to estimate the variance of each trait using the likelihood ratio test, and the principal component analysis (PCA) was performed using the Best Linear Unbiased Predictions (BLUPs) to verify the multivariate pattern among genotypes. The results showed significant genotypic effects for the majority of the traits evaluated. High broad-sense heritability of the traits can be observed. The principal component analysis revealed that the genotypes had more agronomic performance in the experiment with control of stink bugs, also, showed a strong correlation between the traits GY and PHM, and independence between the traits LOD and NDM. There were significant correlations among the agronomic traits, vegetation indices, and canopy, that can be used for indirect selection and joint selections of the traits of the best lineages in the breeding pipeline.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/
url https://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256885001977856