Evaluation of vegetation indices from aerial images in soybean breeding
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/ |
Resumo: | High throughput phenotyping (HTP) is an emerging tool that allows access and identifies simple and complex quantitative traits, accelerating genetic discoveries, and selection. Vegetation indices have been using to detect variation in the crop field, demonstrating correlation with several traits of crop performance. Thus, this study had the main goal to estimate vegetation indices and their correlation with agronomic traits in different soybean populations using RGB images derived from an unmanned aerial vehicle (UAV). Were conducted three experiments in the 2018/2019 season: RIL-C (stink bugs control), RIL-N (Without stink bugs control), and LQ (Without fertilization, soil correction, and stink bugs control) aiming to evaluate genetic resistance to the stink bug complex in soybean lineages. The genotypes were evaluated based on the following traits: Number the days to maturity (NDM), agronomic value (AV), Lodging (LOD), Plant height maturity (PHM), and grain yield (GY). A UAV system with an RGB camera coupled was used to acquire aerial photography flight over the field during the R5 stage. Was estimated the Red Green Blue Vegetation Index (RGBVI), Gren Leaf Index (GLI), Visible Atmospheric Resistant Index (VARI), Triangular Greenness Index (TGI), Normalized Green Red Difference Index (NGRDI), and canopy from the orthomosaic. Linear mixed models were used to estimate the variance of each trait using the likelihood ratio test, and the principal component analysis (PCA) was performed using the Best Linear Unbiased Predictions (BLUPs) to verify the multivariate pattern among genotypes. The results showed significant genotypic effects for the majority of the traits evaluated. High broad-sense heritability of the traits can be observed. The principal component analysis revealed that the genotypes had more agronomic performance in the experiment with control of stink bugs, also, showed a strong correlation between the traits GY and PHM, and independence between the traits LOD and NDM. There were significant correlations among the agronomic traits, vegetation indices, and canopy, that can be used for indirect selection and joint selections of the traits of the best lineages in the breeding pipeline. |
id |
USP_7bcf40c7246500bd66e27686cc3124aa |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12012021-102452 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Evaluation of vegetation indices from aerial images in soybean breedingAvaliação de índices de vegetação a partir de imagens aéreas no melhoramento de sojaGlicine maxGlycine maxFenotipagem de alto rendimentoHigh throughput phenotypingImagens RGBÍndices de vegetaçãoMelhoramento de plantasPlant breedingRGB imagesVegetation indexHigh throughput phenotyping (HTP) is an emerging tool that allows access and identifies simple and complex quantitative traits, accelerating genetic discoveries, and selection. Vegetation indices have been using to detect variation in the crop field, demonstrating correlation with several traits of crop performance. Thus, this study had the main goal to estimate vegetation indices and their correlation with agronomic traits in different soybean populations using RGB images derived from an unmanned aerial vehicle (UAV). Were conducted three experiments in the 2018/2019 season: RIL-C (stink bugs control), RIL-N (Without stink bugs control), and LQ (Without fertilization, soil correction, and stink bugs control) aiming to evaluate genetic resistance to the stink bug complex in soybean lineages. The genotypes were evaluated based on the following traits: Number the days to maturity (NDM), agronomic value (AV), Lodging (LOD), Plant height maturity (PHM), and grain yield (GY). A UAV system with an RGB camera coupled was used to acquire aerial photography flight over the field during the R5 stage. Was estimated the Red Green Blue Vegetation Index (RGBVI), Gren Leaf Index (GLI), Visible Atmospheric Resistant Index (VARI), Triangular Greenness Index (TGI), Normalized Green Red Difference Index (NGRDI), and canopy from the orthomosaic. Linear mixed models were used to estimate the variance of each trait using the likelihood ratio test, and the principal component analysis (PCA) was performed using the Best Linear Unbiased Predictions (BLUPs) to verify the multivariate pattern among genotypes. The results showed significant genotypic effects for the majority of the traits evaluated. High broad-sense heritability of the traits can be observed. The principal component analysis revealed that the genotypes had more agronomic performance in the experiment with control of stink bugs, also, showed a strong correlation between the traits GY and PHM, and independence between the traits LOD and NDM. There were significant correlations among the agronomic traits, vegetation indices, and canopy, that can be used for indirect selection and joint selections of the traits of the best lineages in the breeding pipeline.A fenotipagem de alto rendimento (HTP) é uma ferramenta emergente que permite acesso e identificação dos caracteres quantitativos simples e complexos, acelerando descobertas genéticas e seleção. Os índices de vegetação têm sido utilizados para detectar variações no campo, demonstrando correlação com vários caracteres importantes ao desempenho das culturas. Assim, este estudo teve como objetivo principal estimar índices de vegetação e suas correlações com caracteres agronômicos em diferentes populações de soja, utilizando imagens RGB derivadas de veículo aéreo não tripulado (UAV). Foram conduzidos três experimentos na safra 2018/2019: RIL-C (com controle de percevejos), RIL-N (sem controle de percevejos) e LQ (sem fertilização, correção do solo e controle de percevejos) com o objetivo de avaliar a resistência genética ao complexo de percevejos em linhagens de soja. Os genótipos foram avaliados com base nas seguintes caracteres: número de dias para a maturidade (NDM), valor agronômico (AV), acamamento (LOD), altura da planta na maturidade (PHM) e rendimento de grãos (GY). Um sistema UAV com uma câmera RGB acoplada foi usado para adquirir um vôo de fotografia aérea sobre o campo durante o estágio R5. Foram estimados o Índice de Vegetação Azul Verde Vermelho (RGBVI), Índice de Folha de Verde (GLI), Índice Resistente à Atmosfera Visível (VARI), Índice de Verdidão Triangular (TGI), Índice de Diferença de Verde Vermelho Normalizado (NGRDI) e dossel (Canopy) do ortomosaico. Modelos lineares mistos foram usados para estimar a variância de cada caratere usando o teste da razão de verossimilhança, e a análise de componentes principais foi realizada usando os BLUPs para verificar o padrão multivariado entre os genótipos. Os resultados mostraram efeitos genotípicos significativos para maioria dos caracteres avaliados. Pode-se observar alta herdabilidade dos caracteres. A análise dos componentes principais revelou que os genótipos apresentaram maior desempenho agronômico no experimento com controle de percevejos, além de mostrar forte correlação entre os caracteres GY e PHM e independência entre os caracteres LOD e NDM. Houve correlações significativas entre os caracteres agronômicos, índices de vegetação e dossel, que podem ser usadas para seleção indireta e seleções conjuntas dos caracteres das melhores linhagens no melhoramento de soja.Biblioteca Digitais de Teses e Dissertações da USPPinheiro, Jose BaldinVianna, Mariana Silva2020-09-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-01-14T18:19:01Zoai:teses.usp.br:tde-12012021-102452Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-01-14T18:19:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Evaluation of vegetation indices from aerial images in soybean breeding Avaliação de índices de vegetação a partir de imagens aéreas no melhoramento de soja |
title |
Evaluation of vegetation indices from aerial images in soybean breeding |
spellingShingle |
Evaluation of vegetation indices from aerial images in soybean breeding Vianna, Mariana Silva Glicine max Glycine max Fenotipagem de alto rendimento High throughput phenotyping Imagens RGB Índices de vegetação Melhoramento de plantas Plant breeding RGB images Vegetation index |
title_short |
Evaluation of vegetation indices from aerial images in soybean breeding |
title_full |
Evaluation of vegetation indices from aerial images in soybean breeding |
title_fullStr |
Evaluation of vegetation indices from aerial images in soybean breeding |
title_full_unstemmed |
Evaluation of vegetation indices from aerial images in soybean breeding |
title_sort |
Evaluation of vegetation indices from aerial images in soybean breeding |
author |
Vianna, Mariana Silva |
author_facet |
Vianna, Mariana Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Jose Baldin |
dc.contributor.author.fl_str_mv |
Vianna, Mariana Silva |
dc.subject.por.fl_str_mv |
Glicine max Glycine max Fenotipagem de alto rendimento High throughput phenotyping Imagens RGB Índices de vegetação Melhoramento de plantas Plant breeding RGB images Vegetation index |
topic |
Glicine max Glycine max Fenotipagem de alto rendimento High throughput phenotyping Imagens RGB Índices de vegetação Melhoramento de plantas Plant breeding RGB images Vegetation index |
description |
High throughput phenotyping (HTP) is an emerging tool that allows access and identifies simple and complex quantitative traits, accelerating genetic discoveries, and selection. Vegetation indices have been using to detect variation in the crop field, demonstrating correlation with several traits of crop performance. Thus, this study had the main goal to estimate vegetation indices and their correlation with agronomic traits in different soybean populations using RGB images derived from an unmanned aerial vehicle (UAV). Were conducted three experiments in the 2018/2019 season: RIL-C (stink bugs control), RIL-N (Without stink bugs control), and LQ (Without fertilization, soil correction, and stink bugs control) aiming to evaluate genetic resistance to the stink bug complex in soybean lineages. The genotypes were evaluated based on the following traits: Number the days to maturity (NDM), agronomic value (AV), Lodging (LOD), Plant height maturity (PHM), and grain yield (GY). A UAV system with an RGB camera coupled was used to acquire aerial photography flight over the field during the R5 stage. Was estimated the Red Green Blue Vegetation Index (RGBVI), Gren Leaf Index (GLI), Visible Atmospheric Resistant Index (VARI), Triangular Greenness Index (TGI), Normalized Green Red Difference Index (NGRDI), and canopy from the orthomosaic. Linear mixed models were used to estimate the variance of each trait using the likelihood ratio test, and the principal component analysis (PCA) was performed using the Best Linear Unbiased Predictions (BLUPs) to verify the multivariate pattern among genotypes. The results showed significant genotypic effects for the majority of the traits evaluated. High broad-sense heritability of the traits can be observed. The principal component analysis revealed that the genotypes had more agronomic performance in the experiment with control of stink bugs, also, showed a strong correlation between the traits GY and PHM, and independence between the traits LOD and NDM. There were significant correlations among the agronomic traits, vegetation indices, and canopy, that can be used for indirect selection and joint selections of the traits of the best lineages in the breeding pipeline. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-12012021-102452/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256885001977856 |