Leveraging the application of Earth observation data for mapping and monitoring cropland soils
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11140/tde-26112020-163718/ |
Resumo: | The use and sustainable development of cropland soils requires the continuous monitoring and promotion of good practices that support soil quality and the provision of its several functions. As the soil quality and functioning can be affected by several factors and interventions, resulting in changes at the temporal and spatial scales, Earth observation (EO) systems become an sound alternative for monitoring soils due to ability in providing data in a timely manner, covering large geographical areas, and revisiting the same place in Earth in short periods of time. Furthermore, as the availability of detailed information about cropland soils is still a challenge in most countries, and recent literature has been supporting the proposition that collections of EO data are a valuable source for environmental studies, this study aimed at exploring the collection of satellite images for mapping and monitoring cropland soils over large geographical areas. For this, we developed the routines for processing big EO data within a high-performance cloud-based platform. With the combination of extracted features from EO data, legacy soil datasets, and machine learning algorithms, we performed the medium-resolution mapping of cropland soils over the geographical extents of Europe and Brazil. We demonstrated in this study that the collection of Landsat images is a valuable source for extracting spectral features useful for mapping and monitoring cropland soils. The bare soil composite based on the median of 37 years of Landsat imagery allowed the prediction of clay and calcium carbonates with moderate performance in Europe. In addition to that, using the Google Earth Engine, we developed and made publicly available a package to calculate terrain attributes customized to different spatial resolutions, which can be scaled up to the global extent. This package was particularly important for preparing additional information for mapping the cropland soils in Brazil. The spectral and terrain features extracted from EO data allowed the calibration of prediction models of clay, sand, soil organic carbon (SOC) content, and SOC stock with satisfactory accuracy across the Brazilian cropland soils. With the resulting maps, we were able to estimate the total SOC stock and identify some aspects related to the distribution of soil attributes regarding the main agricultural regions. Therefore, this study supports the proposition that EO data is a valuable source for extracting environmental features for mapping and monitoring cropland soils at finer resolutions, assisting the evaluation of soil spatial distribution and the historical agriculture expansion in Europe and Brazil. |
id |
USP_7c0841b92f42a0e239df90a62bb13d4d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26112020-163718 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Leveraging the application of Earth observation data for mapping and monitoring cropland soilsPotencializando a aplicação de dados de observação da Terra para o mapeamento e monitoramento de solos agrícolasAprendizado de máquinaDigital soil mappingMachine learningMapeamento digital do soloPedometriaPedometricsRemote sensingSensoriamento remotoThe use and sustainable development of cropland soils requires the continuous monitoring and promotion of good practices that support soil quality and the provision of its several functions. As the soil quality and functioning can be affected by several factors and interventions, resulting in changes at the temporal and spatial scales, Earth observation (EO) systems become an sound alternative for monitoring soils due to ability in providing data in a timely manner, covering large geographical areas, and revisiting the same place in Earth in short periods of time. Furthermore, as the availability of detailed information about cropland soils is still a challenge in most countries, and recent literature has been supporting the proposition that collections of EO data are a valuable source for environmental studies, this study aimed at exploring the collection of satellite images for mapping and monitoring cropland soils over large geographical areas. For this, we developed the routines for processing big EO data within a high-performance cloud-based platform. With the combination of extracted features from EO data, legacy soil datasets, and machine learning algorithms, we performed the medium-resolution mapping of cropland soils over the geographical extents of Europe and Brazil. We demonstrated in this study that the collection of Landsat images is a valuable source for extracting spectral features useful for mapping and monitoring cropland soils. The bare soil composite based on the median of 37 years of Landsat imagery allowed the prediction of clay and calcium carbonates with moderate performance in Europe. In addition to that, using the Google Earth Engine, we developed and made publicly available a package to calculate terrain attributes customized to different spatial resolutions, which can be scaled up to the global extent. This package was particularly important for preparing additional information for mapping the cropland soils in Brazil. The spectral and terrain features extracted from EO data allowed the calibration of prediction models of clay, sand, soil organic carbon (SOC) content, and SOC stock with satisfactory accuracy across the Brazilian cropland soils. With the resulting maps, we were able to estimate the total SOC stock and identify some aspects related to the distribution of soil attributes regarding the main agricultural regions. Therefore, this study supports the proposition that EO data is a valuable source for extracting environmental features for mapping and monitoring cropland soils at finer resolutions, assisting the evaluation of soil spatial distribution and the historical agriculture expansion in Europe and Brazil.O uso e desenvolvimento sustentável de terras agrícolas requer o monitoramento contínuo e a promoção de boas práticas que preservam a qualidade do solo e o proporcionem suas diversas funções. Como a qualidade e o funcionamento do solo pode ser afetado por diversos fatores e intervenções, as quais resultam em mudanças nas escalas temporal e espacial, os sistemas de observação da Terra (OT) tornam-se uma alternativa atrativa de monitoramento devido à capacidade de fornecer dados em tempo hábil, cobrindo grandes áreas geográficas, e revisitando o mesmo lugar na Terra em curtos períodos de tempo. Além disso, como a disponibilidade de informações detalhadas sobre solos de terras agrícolas ainda é um desafio na maioria dos países, e a literatura recente tem apoiado a proposição de que as coleções de dados de OT é uma fonte valiosa para estudos ambientais, este estudo teve como objetivo explorar as coleções de imagens de satélite para o mapeamento e monitoramento de solos agrícolas em grandes extensões geográficas. Para isso, desenvolvemos as rotinas de processamento de grande volume de dados OT em uma plataforma de alto desempenho baseada na nuvem. Com a combinação de recursos extraídos de dados de OT, informações legadas de solo, e algoritmos de aprendizado de máquina, realizamos o mapeamento de média resolução de solos agrícolas sobre as extensões geográficas da Europa e do Brasil. Demonstramos neste estudo que a coleção de imagens do Landsat é uma fonte valiosa para extrair recursos espectrais úteis para o mapeamento e monitoramento solos agrícolas. Imagens de solo exposto, baseados no valor mediano de 37 anos de imagens Landsat, permitiu a predição do teor de argila e carbonatos de cálcio com desempenho moderado no continente Europeu. Além disso, usando o Google Earth Engine, desenvolvemos e disponibilizamos publicamente um pacote para calcular atributos de terreno personalizados para diferentes resoluções espaciais, a qual pode ser explorada em estudos globais. Este pacote também foi particularmente importante para preparar informações adicionais para o mapeamento de solos agrícolas no Brasil. As características extraídas dos dados de OT permitiram a predição de argila, areia, conteúdo de carbono orgânico do solo (COS) e estoque de COS com acurácia satisfatória em solos agrícolas do território brasileiro. Com os mapas resultantes, conseguimos estimar o estoque total de SOC e identificar alguns aspectos relacionados à distribuição dos atributos do solo nas principais regiões agrícolas. Portanto, este estudo apoia a proposição de que dados de OT são uma fonte valiosa para extrair características da paisagem úteis ao mapeamento e monitoramento de solos agrícolas com resoluções mais precisas, auxiliando na avaliação da distribuição espacial do solo e no entendimento da expansão histórica da agricultura no Brasil e Europa.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloSafanelli, José Lucas2020-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-26112020-163718/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-12-02T18:42:02Zoai:teses.usp.br:tde-26112020-163718Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-12-02T18:42:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils Potencializando a aplicação de dados de observação da Terra para o mapeamento e monitoramento de solos agrícolas |
title |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils |
spellingShingle |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils Safanelli, José Lucas Aprendizado de máquina Digital soil mapping Machine learning Mapeamento digital do solo Pedometria Pedometrics Remote sensing Sensoriamento remoto |
title_short |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils |
title_full |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils |
title_fullStr |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils |
title_full_unstemmed |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils |
title_sort |
Leveraging the application of Earth observation data for mapping and monitoring cropland soils |
author |
Safanelli, José Lucas |
author_facet |
Safanelli, José Lucas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dematte, Jose Alexandre Melo |
dc.contributor.author.fl_str_mv |
Safanelli, José Lucas |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Digital soil mapping Machine learning Mapeamento digital do solo Pedometria Pedometrics Remote sensing Sensoriamento remoto |
topic |
Aprendizado de máquina Digital soil mapping Machine learning Mapeamento digital do solo Pedometria Pedometrics Remote sensing Sensoriamento remoto |
description |
The use and sustainable development of cropland soils requires the continuous monitoring and promotion of good practices that support soil quality and the provision of its several functions. As the soil quality and functioning can be affected by several factors and interventions, resulting in changes at the temporal and spatial scales, Earth observation (EO) systems become an sound alternative for monitoring soils due to ability in providing data in a timely manner, covering large geographical areas, and revisiting the same place in Earth in short periods of time. Furthermore, as the availability of detailed information about cropland soils is still a challenge in most countries, and recent literature has been supporting the proposition that collections of EO data are a valuable source for environmental studies, this study aimed at exploring the collection of satellite images for mapping and monitoring cropland soils over large geographical areas. For this, we developed the routines for processing big EO data within a high-performance cloud-based platform. With the combination of extracted features from EO data, legacy soil datasets, and machine learning algorithms, we performed the medium-resolution mapping of cropland soils over the geographical extents of Europe and Brazil. We demonstrated in this study that the collection of Landsat images is a valuable source for extracting spectral features useful for mapping and monitoring cropland soils. The bare soil composite based on the median of 37 years of Landsat imagery allowed the prediction of clay and calcium carbonates with moderate performance in Europe. In addition to that, using the Google Earth Engine, we developed and made publicly available a package to calculate terrain attributes customized to different spatial resolutions, which can be scaled up to the global extent. This package was particularly important for preparing additional information for mapping the cropland soils in Brazil. The spectral and terrain features extracted from EO data allowed the calibration of prediction models of clay, sand, soil organic carbon (SOC) content, and SOC stock with satisfactory accuracy across the Brazilian cropland soils. With the resulting maps, we were able to estimate the total SOC stock and identify some aspects related to the distribution of soil attributes regarding the main agricultural regions. Therefore, this study supports the proposition that EO data is a valuable source for extracting environmental features for mapping and monitoring cropland soils at finer resolutions, assisting the evaluation of soil spatial distribution and the historical agriculture expansion in Europe and Brazil. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-26112020-163718/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-26112020-163718/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257388353060864 |