On the cohomology of representations up to homotopy of Lie groupoids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/ |
Resumo: | We study the concept of representations up to homotopy of Lie groupoids. Our main result is the proof that the cohomology of a Lie groupoid with coefficients in a representation up to homotopy is a Morita invariant of the groupoid. This can be interpreted as a way to provide cohomological invariants for orbifolds and more generally for differentiable stacks, which are spaces with singularities whose isomorphism classes are in one-to-one correspondence with Morita equivalence classes of Lie groupoids. To prove this result, we rely on the theory of simplicial objects in smooth categories e.g. simplicial manifolds, sim- plicial vector bundles, and equivalences between them which are defined in terms of maps called hypercovers. We also prove results on the invariance of the simplicial cohomology of these spaces under hypercovers. |
id |
USP_7c9210ea036c3a0f3bd3de6eb6b974ce |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27042020-232832 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
On the cohomology of representations up to homotopy of Lie groupoidsSobre a cohomologia de representações a menos de homotopia de grupoides de LieCohomologyCohomologyLie groupoidLie groupoidRepresentation up to homotopyRepresentation up to homotopySimplicial manifoldSimplicial manifoldWe study the concept of representations up to homotopy of Lie groupoids. Our main result is the proof that the cohomology of a Lie groupoid with coefficients in a representation up to homotopy is a Morita invariant of the groupoid. This can be interpreted as a way to provide cohomological invariants for orbifolds and more generally for differentiable stacks, which are spaces with singularities whose isomorphism classes are in one-to-one correspondence with Morita equivalence classes of Lie groupoids. To prove this result, we rely on the theory of simplicial objects in smooth categories e.g. simplicial manifolds, sim- plicial vector bundles, and equivalences between them which are defined in terms of maps called hypercovers. We also prove results on the invariance of the simplicial cohomology of these spaces under hypercovers.Estudamos o conceito de representações a menos de homotopia de grupoides de Lie e a cohomologia naturalmente associada a tais representações. Nosso principal resultado é a prova de que a cohomologia de um grupoide de Lie com valores em uma representação a menos de homotopia é um invariante de Morita, o que pode ser interpretado como uma forma de introduzir invariantes cohomologicos para orbifolds e mais geralmente para stacks diferenciáveis, que são espaços com singularidades cujas classes de isomorfismo estão em correspondência biunvoca com classes de equivalência de Morita de grupoides de Lie. Para provar tal resultado, utilizamos a teoria de objetos simpliciais em categorias suaves e.g. variedades simpliciais, fibrados vetoriais simpliciais e equivalências entre eles, definidas a partir de mapas chamados hypercovers. Demonstramos também a invariância da cohomologia simplicial destes objetos sob hypercovers.Biblioteca Digitais de Teses e Dissertações da USPGonzalez, Cristian Andres OrtizCarvalho, Fernando Studzinski2019-11-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-04-28T22:56:02Zoai:teses.usp.br:tde-27042020-232832Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-04-28T22:56:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
On the cohomology of representations up to homotopy of Lie groupoids Sobre a cohomologia de representações a menos de homotopia de grupoides de Lie |
title |
On the cohomology of representations up to homotopy of Lie groupoids |
spellingShingle |
On the cohomology of representations up to homotopy of Lie groupoids Carvalho, Fernando Studzinski Cohomology Cohomology Lie groupoid Lie groupoid Representation up to homotopy Representation up to homotopy Simplicial manifold Simplicial manifold |
title_short |
On the cohomology of representations up to homotopy of Lie groupoids |
title_full |
On the cohomology of representations up to homotopy of Lie groupoids |
title_fullStr |
On the cohomology of representations up to homotopy of Lie groupoids |
title_full_unstemmed |
On the cohomology of representations up to homotopy of Lie groupoids |
title_sort |
On the cohomology of representations up to homotopy of Lie groupoids |
author |
Carvalho, Fernando Studzinski |
author_facet |
Carvalho, Fernando Studzinski |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonzalez, Cristian Andres Ortiz |
dc.contributor.author.fl_str_mv |
Carvalho, Fernando Studzinski |
dc.subject.por.fl_str_mv |
Cohomology Cohomology Lie groupoid Lie groupoid Representation up to homotopy Representation up to homotopy Simplicial manifold Simplicial manifold |
topic |
Cohomology Cohomology Lie groupoid Lie groupoid Representation up to homotopy Representation up to homotopy Simplicial manifold Simplicial manifold |
description |
We study the concept of representations up to homotopy of Lie groupoids. Our main result is the proof that the cohomology of a Lie groupoid with coefficients in a representation up to homotopy is a Morita invariant of the groupoid. This can be interpreted as a way to provide cohomological invariants for orbifolds and more generally for differentiable stacks, which are spaces with singularities whose isomorphism classes are in one-to-one correspondence with Morita equivalence classes of Lie groupoids. To prove this result, we rely on the theory of simplicial objects in smooth categories e.g. simplicial manifolds, sim- plicial vector bundles, and equivalences between them which are defined in terms of maps called hypercovers. We also prove results on the invariance of the simplicial cohomology of these spaces under hypercovers. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257408460554240 |