On the cohomology of representations up to homotopy of Lie groupoids

Detalhes bibliográficos
Autor(a) principal: Carvalho, Fernando Studzinski
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/
Resumo: We study the concept of representations up to homotopy of Lie groupoids. Our main result is the proof that the cohomology of a Lie groupoid with coefficients in a representation up to homotopy is a Morita invariant of the groupoid. This can be interpreted as a way to provide cohomological invariants for orbifolds and more generally for differentiable stacks, which are spaces with singularities whose isomorphism classes are in one-to-one correspondence with Morita equivalence classes of Lie groupoids. To prove this result, we rely on the theory of simplicial objects in smooth categories e.g. simplicial manifolds, sim- plicial vector bundles, and equivalences between them which are defined in terms of maps called hypercovers. We also prove results on the invariance of the simplicial cohomology of these spaces under hypercovers.
id USP_7c9210ea036c3a0f3bd3de6eb6b974ce
oai_identifier_str oai:teses.usp.br:tde-27042020-232832
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling On the cohomology of representations up to homotopy of Lie groupoidsSobre a cohomologia de representações a menos de homotopia de grupoides de LieCohomologyCohomologyLie groupoidLie groupoidRepresentation up to homotopyRepresentation up to homotopySimplicial manifoldSimplicial manifoldWe study the concept of representations up to homotopy of Lie groupoids. Our main result is the proof that the cohomology of a Lie groupoid with coefficients in a representation up to homotopy is a Morita invariant of the groupoid. This can be interpreted as a way to provide cohomological invariants for orbifolds and more generally for differentiable stacks, which are spaces with singularities whose isomorphism classes are in one-to-one correspondence with Morita equivalence classes of Lie groupoids. To prove this result, we rely on the theory of simplicial objects in smooth categories e.g. simplicial manifolds, sim- plicial vector bundles, and equivalences between them which are defined in terms of maps called hypercovers. We also prove results on the invariance of the simplicial cohomology of these spaces under hypercovers.Estudamos o conceito de representações a menos de homotopia de grupoides de Lie e a cohomologia naturalmente associada a tais representações. Nosso principal resultado é a prova de que a cohomologia de um grupoide de Lie com valores em uma representação a menos de homotopia é um invariante de Morita, o que pode ser interpretado como uma forma de introduzir invariantes cohomologicos para orbifolds e mais geralmente para stacks diferenciáveis, que são espaços com singularidades cujas classes de isomorfismo estão em correspondência biunvoca com classes de equivalência de Morita de grupoides de Lie. Para provar tal resultado, utilizamos a teoria de objetos simpliciais em categorias suaves e.g. variedades simpliciais, fibrados vetoriais simpliciais e equivalências entre eles, definidas a partir de mapas chamados hypercovers. Demonstramos também a invariância da cohomologia simplicial destes objetos sob hypercovers.Biblioteca Digitais de Teses e Dissertações da USPGonzalez, Cristian Andres OrtizCarvalho, Fernando Studzinski2019-11-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-04-28T22:56:02Zoai:teses.usp.br:tde-27042020-232832Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-04-28T22:56:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On the cohomology of representations up to homotopy of Lie groupoids
Sobre a cohomologia de representações a menos de homotopia de grupoides de Lie
title On the cohomology of representations up to homotopy of Lie groupoids
spellingShingle On the cohomology of representations up to homotopy of Lie groupoids
Carvalho, Fernando Studzinski
Cohomology
Cohomology
Lie groupoid
Lie groupoid
Representation up to homotopy
Representation up to homotopy
Simplicial manifold
Simplicial manifold
title_short On the cohomology of representations up to homotopy of Lie groupoids
title_full On the cohomology of representations up to homotopy of Lie groupoids
title_fullStr On the cohomology of representations up to homotopy of Lie groupoids
title_full_unstemmed On the cohomology of representations up to homotopy of Lie groupoids
title_sort On the cohomology of representations up to homotopy of Lie groupoids
author Carvalho, Fernando Studzinski
author_facet Carvalho, Fernando Studzinski
author_role author
dc.contributor.none.fl_str_mv Gonzalez, Cristian Andres Ortiz
dc.contributor.author.fl_str_mv Carvalho, Fernando Studzinski
dc.subject.por.fl_str_mv Cohomology
Cohomology
Lie groupoid
Lie groupoid
Representation up to homotopy
Representation up to homotopy
Simplicial manifold
Simplicial manifold
topic Cohomology
Cohomology
Lie groupoid
Lie groupoid
Representation up to homotopy
Representation up to homotopy
Simplicial manifold
Simplicial manifold
description We study the concept of representations up to homotopy of Lie groupoids. Our main result is the proof that the cohomology of a Lie groupoid with coefficients in a representation up to homotopy is a Morita invariant of the groupoid. This can be interpreted as a way to provide cohomological invariants for orbifolds and more generally for differentiable stacks, which are spaces with singularities whose isomorphism classes are in one-to-one correspondence with Morita equivalence classes of Lie groupoids. To prove this result, we rely on the theory of simplicial objects in smooth categories e.g. simplicial manifolds, sim- plicial vector bundles, and equivalences between them which are defined in terms of maps called hypercovers. We also prove results on the invariance of the simplicial cohomology of these spaces under hypercovers.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/
url https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27042020-232832/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257408460554240