Aproximação numérica à convolução de Mellin via mistura de exponenciais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-09122015-123230/ |
Resumo: | A finalidade deste trabalho e calcular a composição de modelos no FBST (the Full Bayesian Signicance Test) descrito por Borges e Stern [6]. Nosso objetivo foi encontrar um método de aproximação numérica mais eficiente que consiga substituir o método de condensação descrita por Kaplan. Três técnicas foram comparadas: a primeira é a aproximação da convolução de Mellin usando discretização e condensação descrita por Kaplan [11], a segunda é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para calcular a convolução de Fourier mediante a aproximação de mistura de convoluções exponenciais, usando a estrutura algébrica descrita por Hogg [10], mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin, a terceira é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para aproximar diretamente via mistura de exponenciais a convolução de Fourier, mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin. |
id |
USP_7ccbd17cb4861323b69e4f3be9249cd8 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09122015-123230 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aproximação numérica à convolução de Mellin via mistura de exponenciaisNumerical approximation to Mellin convolution by mixtures of exponentialsAproximação numéricaConvoluçãoConvolutionMistura de exponenciaisMixtures of exponentialsNumerical approximationA finalidade deste trabalho e calcular a composição de modelos no FBST (the Full Bayesian Signicance Test) descrito por Borges e Stern [6]. Nosso objetivo foi encontrar um método de aproximação numérica mais eficiente que consiga substituir o método de condensação descrita por Kaplan. Três técnicas foram comparadas: a primeira é a aproximação da convolução de Mellin usando discretização e condensação descrita por Kaplan [11], a segunda é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para calcular a convolução de Fourier mediante a aproximação de mistura de convoluções exponenciais, usando a estrutura algébrica descrita por Hogg [10], mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin, a terceira é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para aproximar diretamente via mistura de exponenciais a convolução de Fourier, mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin.The purpose of this work is to calculate the compositional models of FBST (the Full Bayesian Signicance Test) studied by Borges and Stern [6]. The objective of this work was to find an approximation method numerically eficient that can replace the condensation methods described by Kaplan. Three techniques were compared: First, the approximation of Mellin convolution using discretization and condensation described by Kaplan [11], second, the approximation of Mellin convolution using mixtures of exponentials, described by Dufresne [8], to calculate the Fourier convolution by approximation of mixtures of exponential convolutions, using the algebraic structure described by Hogg [10], and then to apply the operator described by Collins [7], to transform the usual convolution to Mellin convolution, third, the approximation of Mellin convolution using mixtures of exponentials, described by Dufresne [8], to calculate the Fourier convolution by direct approximation of mixtures of exponentials, and then to apply the operator described by Collins [7], to transform the usual convolution to Mellin convolution.Biblioteca Digitais de Teses e Dissertações da USPStern, Julio MichaelTorrejón Matos, Jorge Luis2015-10-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-09122015-123230/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-09122015-123230Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aproximação numérica à convolução de Mellin via mistura de exponenciais Numerical approximation to Mellin convolution by mixtures of exponentials |
title |
Aproximação numérica à convolução de Mellin via mistura de exponenciais |
spellingShingle |
Aproximação numérica à convolução de Mellin via mistura de exponenciais Torrejón Matos, Jorge Luis Aproximação numérica Convolução Convolution Mistura de exponenciais Mixtures of exponentials Numerical approximation |
title_short |
Aproximação numérica à convolução de Mellin via mistura de exponenciais |
title_full |
Aproximação numérica à convolução de Mellin via mistura de exponenciais |
title_fullStr |
Aproximação numérica à convolução de Mellin via mistura de exponenciais |
title_full_unstemmed |
Aproximação numérica à convolução de Mellin via mistura de exponenciais |
title_sort |
Aproximação numérica à convolução de Mellin via mistura de exponenciais |
author |
Torrejón Matos, Jorge Luis |
author_facet |
Torrejón Matos, Jorge Luis |
author_role |
author |
dc.contributor.none.fl_str_mv |
Stern, Julio Michael |
dc.contributor.author.fl_str_mv |
Torrejón Matos, Jorge Luis |
dc.subject.por.fl_str_mv |
Aproximação numérica Convolução Convolution Mistura de exponenciais Mixtures of exponentials Numerical approximation |
topic |
Aproximação numérica Convolução Convolution Mistura de exponenciais Mixtures of exponentials Numerical approximation |
description |
A finalidade deste trabalho e calcular a composição de modelos no FBST (the Full Bayesian Signicance Test) descrito por Borges e Stern [6]. Nosso objetivo foi encontrar um método de aproximação numérica mais eficiente que consiga substituir o método de condensação descrita por Kaplan. Três técnicas foram comparadas: a primeira é a aproximação da convolução de Mellin usando discretização e condensação descrita por Kaplan [11], a segunda é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para calcular a convolução de Fourier mediante a aproximação de mistura de convoluções exponenciais, usando a estrutura algébrica descrita por Hogg [10], mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin, a terceira é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para aproximar diretamente via mistura de exponenciais a convolução de Fourier, mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-09122015-123230/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-09122015-123230/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256848359489536 |