Novos operadores de fusão aplicados a descritores de textura
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18152/tde-06012020-160732/ |
Resumo: | A análise de texturas é fundamental em diversas aplicações de visão computacional e de reconhecimento de padrões. Diversos descritores de textura são propostos na literatura, com a finalidade de se representar adequadamente as imagens de textura, sendo a extração de características uma etapa essencial nesta tarefa. No entanto, o desempenho dos descritores está relacionado ao tipo de imagem em que são aplicados, não havendo um descritor que garanta o melhor resultado para todo conjunto de imagens. Procedimentos como a fusão da informação permitem obter resultados melhores que os obtidos com a aplicação das respectivas técnicas individualmente. A fim de contribuir para a melhor representação de texturas, esta tese propõe três novos descritores de textura baseados em fusão de características, Completed Mean Local Mapped Pattern (CMLMP), Completed Median Local Mapped Pattern (CMedianLMP) e Completed Z with Tilted Z Local Mapped Pattern (CZTZLMP), fundamentados na associação da metodologia de extração de informações complementares de uma textura pelas componentes Sinal, Magnitude e Centro, com uma regra específica de determinação das diferenças de nível de cinza de uma vizinhança. Propõe também dois novos operadores de fusão, SomaM e GramM no espaço de fusão, cujas regras de combinação de características evidenciam as informações complementares entre os diferentes descritores combinados. Os métodos propostos foram aplicados a registro de imagens e a reconhecimento de distorção arquitetural mamária em mamografias digitais. Os respectivos desempenhos foram comparados aos de diversos descritores de textura e a operadores de fusão publicados na literatura. De acordo com os resultados obtidos, os descritores propostos apresentaram desempenho superior ao dos demais descritores com os quais foram comparados, o que incentiva a utilização dos mesmos em outras aplicações. Além disso, os operadores de fusão propostos permitiram resultados melhores que os obtidos com a aplicação dos demais operadores e resultaram em vetores de características de menor dimensão. |
id |
USP_7d2d50f9fe8abc67a2415c7000d83a42 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06012020-160732 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Novos operadores de fusão aplicados a descritores de textura Novel fusion operators applied to texture descriptorsBreast architectural distortionDecision fusionDescritores de texturaDigital mammographyDistorção arquitetural mamáriaExtração de característicasFeature extractionFeature fusionFusão de característicasFusão de decisãoFusão de descritoresFusion operatorsImage recognitionImage registrationMamografia digitalOperadores de fusãoReconhecimento de imagensRegistro de imagensTexture descriptorsA análise de texturas é fundamental em diversas aplicações de visão computacional e de reconhecimento de padrões. Diversos descritores de textura são propostos na literatura, com a finalidade de se representar adequadamente as imagens de textura, sendo a extração de características uma etapa essencial nesta tarefa. No entanto, o desempenho dos descritores está relacionado ao tipo de imagem em que são aplicados, não havendo um descritor que garanta o melhor resultado para todo conjunto de imagens. Procedimentos como a fusão da informação permitem obter resultados melhores que os obtidos com a aplicação das respectivas técnicas individualmente. A fim de contribuir para a melhor representação de texturas, esta tese propõe três novos descritores de textura baseados em fusão de características, Completed Mean Local Mapped Pattern (CMLMP), Completed Median Local Mapped Pattern (CMedianLMP) e Completed Z with Tilted Z Local Mapped Pattern (CZTZLMP), fundamentados na associação da metodologia de extração de informações complementares de uma textura pelas componentes Sinal, Magnitude e Centro, com uma regra específica de determinação das diferenças de nível de cinza de uma vizinhança. Propõe também dois novos operadores de fusão, SomaM e GramM no espaço de fusão, cujas regras de combinação de características evidenciam as informações complementares entre os diferentes descritores combinados. Os métodos propostos foram aplicados a registro de imagens e a reconhecimento de distorção arquitetural mamária em mamografias digitais. Os respectivos desempenhos foram comparados aos de diversos descritores de textura e a operadores de fusão publicados na literatura. De acordo com os resultados obtidos, os descritores propostos apresentaram desempenho superior ao dos demais descritores com os quais foram comparados, o que incentiva a utilização dos mesmos em outras aplicações. Além disso, os operadores de fusão propostos permitiram resultados melhores que os obtidos com a aplicação dos demais operadores e resultaram em vetores de características de menor dimensão.Texture analysis is essential in computer vision and pattern recognition. Several texture descriptors are proposed in order to properly represent texture images. However, the descriptors performance is dependent on the images. It is a hard task to develop an ideal descriptor as there is not a descriptor that guarantees the best result for the whole set of images. Information fusion achieves better results than individual sources. In order to contribute to texture representation, we propose three novel fusion-based texture descriptors, namely: Completed Mean Local Mapped Pattern (CMLMP), Completed Median Local Mapped Pattern (CMedianLMP) and Completed Z with Tilted Z Local Mapped Pattern (CZTZLMP), based on Signal, Magnitude and Centre complementary information with a specific rule for determining gray level differences in a neighborhood. To combine features from texture descriptors, this work also proposes two fusion operators, SumM and GramM. The proposed methods were applied to image registration and to the detection of breast architectural distortion in digital mammography, and then compared to several texture descriptors and fusion operators published in the literature. The experimental results show that the proposed fusion-based texture descriptors outperformed all other descriptors, which encourages their implementation in other applications. Moreover, the proposed fusion operators outperformed all other operators, and generated smaller feature vectors.Biblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonPereira Junior, Osmando2019-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18152/tde-06012020-160732/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-06012020-160732Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Novos operadores de fusão aplicados a descritores de textura Novel fusion operators applied to texture descriptors |
title |
Novos operadores de fusão aplicados a descritores de textura |
spellingShingle |
Novos operadores de fusão aplicados a descritores de textura Pereira Junior, Osmando Breast architectural distortion Decision fusion Descritores de textura Digital mammography Distorção arquitetural mamária Extração de características Feature extraction Feature fusion Fusão de características Fusão de decisão Fusão de descritores Fusion operators Image recognition Image registration Mamografia digital Operadores de fusão Reconhecimento de imagens Registro de imagens Texture descriptors |
title_short |
Novos operadores de fusão aplicados a descritores de textura |
title_full |
Novos operadores de fusão aplicados a descritores de textura |
title_fullStr |
Novos operadores de fusão aplicados a descritores de textura |
title_full_unstemmed |
Novos operadores de fusão aplicados a descritores de textura |
title_sort |
Novos operadores de fusão aplicados a descritores de textura |
author |
Pereira Junior, Osmando |
author_facet |
Pereira Junior, Osmando |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonzaga, Adilson |
dc.contributor.author.fl_str_mv |
Pereira Junior, Osmando |
dc.subject.por.fl_str_mv |
Breast architectural distortion Decision fusion Descritores de textura Digital mammography Distorção arquitetural mamária Extração de características Feature extraction Feature fusion Fusão de características Fusão de decisão Fusão de descritores Fusion operators Image recognition Image registration Mamografia digital Operadores de fusão Reconhecimento de imagens Registro de imagens Texture descriptors |
topic |
Breast architectural distortion Decision fusion Descritores de textura Digital mammography Distorção arquitetural mamária Extração de características Feature extraction Feature fusion Fusão de características Fusão de decisão Fusão de descritores Fusion operators Image recognition Image registration Mamografia digital Operadores de fusão Reconhecimento de imagens Registro de imagens Texture descriptors |
description |
A análise de texturas é fundamental em diversas aplicações de visão computacional e de reconhecimento de padrões. Diversos descritores de textura são propostos na literatura, com a finalidade de se representar adequadamente as imagens de textura, sendo a extração de características uma etapa essencial nesta tarefa. No entanto, o desempenho dos descritores está relacionado ao tipo de imagem em que são aplicados, não havendo um descritor que garanta o melhor resultado para todo conjunto de imagens. Procedimentos como a fusão da informação permitem obter resultados melhores que os obtidos com a aplicação das respectivas técnicas individualmente. A fim de contribuir para a melhor representação de texturas, esta tese propõe três novos descritores de textura baseados em fusão de características, Completed Mean Local Mapped Pattern (CMLMP), Completed Median Local Mapped Pattern (CMedianLMP) e Completed Z with Tilted Z Local Mapped Pattern (CZTZLMP), fundamentados na associação da metodologia de extração de informações complementares de uma textura pelas componentes Sinal, Magnitude e Centro, com uma regra específica de determinação das diferenças de nível de cinza de uma vizinhança. Propõe também dois novos operadores de fusão, SomaM e GramM no espaço de fusão, cujas regras de combinação de características evidenciam as informações complementares entre os diferentes descritores combinados. Os métodos propostos foram aplicados a registro de imagens e a reconhecimento de distorção arquitetural mamária em mamografias digitais. Os respectivos desempenhos foram comparados aos de diversos descritores de textura e a operadores de fusão publicados na literatura. De acordo com os resultados obtidos, os descritores propostos apresentaram desempenho superior ao dos demais descritores com os quais foram comparados, o que incentiva a utilização dos mesmos em outras aplicações. Além disso, os operadores de fusão propostos permitiram resultados melhores que os obtidos com a aplicação dos demais operadores e resultaram em vetores de características de menor dimensão. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18152/tde-06012020-160732/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18152/tde-06012020-160732/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256490559143936 |