Primeiro tempo de retorno para processos \\beta-mixing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-26082014-181141/ |
Resumo: | Seja X um alfabeto finito ou infinito enumerável, e considere como X^n o conjunto de todas as sequências de tamanho n. No presente trabalho, nós consideramos a função Tn, definida em X^n e tomando valores entre 1 e infinito. Tn será o primeiro tempo que demora sequência de tamanho n, digamos w, em aparecer de novo sobre uma sequência infinita do processo que começa com w. Este tempo é conhecido como o tempo de retorno. Seja Sn(w) = n - Tn(w) o nosso objeto de estudo, definido também em X^n e tomando valores entre menos infinito e n-1. A função Sn foi colocada em evidência, entre outros casos, na análise estatística da Recorrência de Poincaré, e possui relação explícita com a entropia do processo. Abadi e Lambert, provaram a convergência da distribuição de Sn, quando a sequência é escolhida de acordo com a medida produto de n variáveis aleatórias independentes e identicamente distribuídas no alfabeto e como consequência, mostraram a convergência da esperança de Sn. Nosso trabalho consiste em generalizar o trabalho feito por Abadi e Lambert para processos com uma condição de dependência \\beta-mixing. |
id |
USP_7d80a2e5ce3a5031f4ad5a29c406dd5e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26082014-181141 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Primeiro tempo de retorno para processos \\beta-mixingFirst Return Time of the sequence under \\betamixing conditionsConvergenceConvergênciaMixingOverlappingReturn timesSobreposiçãoTempo de retorno\beta-MixingSeja X um alfabeto finito ou infinito enumerável, e considere como X^n o conjunto de todas as sequências de tamanho n. No presente trabalho, nós consideramos a função Tn, definida em X^n e tomando valores entre 1 e infinito. Tn será o primeiro tempo que demora sequência de tamanho n, digamos w, em aparecer de novo sobre uma sequência infinita do processo que começa com w. Este tempo é conhecido como o tempo de retorno. Seja Sn(w) = n - Tn(w) o nosso objeto de estudo, definido também em X^n e tomando valores entre menos infinito e n-1. A função Sn foi colocada em evidência, entre outros casos, na análise estatística da Recorrência de Poincaré, e possui relação explícita com a entropia do processo. Abadi e Lambert, provaram a convergência da distribuição de Sn, quando a sequência é escolhida de acordo com a medida produto de n variáveis aleatórias independentes e identicamente distribuídas no alfabeto e como consequência, mostraram a convergência da esperança de Sn. Nosso trabalho consiste em generalizar o trabalho feito por Abadi e Lambert para processos com uma condição de dependência \\beta-mixing.We consider the set of finite sequences of length n over a finite or countable alphabet X . We consider the function defined over X^n, Sn = n-\"the first return\". Abadi and Lambert, computed the exact distribution and the limiting distribution of the Sn when the sequence is generated by independent and identically distributed random variables. Our work consists in a generalization of the work done by Abadi and Lambert to processes that verify the \\beta-mixing condition and \\{Xn\\}_{n\\inN} takes values over finite or countable alphabet.Biblioteca Digitais de Teses e Dissertações da USPAbadi, Miguel NatalioRada Mora, Erika Alejandra2014-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-26082014-181141/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T22:33:03Zoai:teses.usp.br:tde-26082014-181141Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T22:33:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Primeiro tempo de retorno para processos \\beta-mixing First Return Time of the sequence under \\betamixing conditions |
title |
Primeiro tempo de retorno para processos \\beta-mixing |
spellingShingle |
Primeiro tempo de retorno para processos \\beta-mixing Rada Mora, Erika Alejandra Convergence Convergência Mixing Overlapping Return times Sobreposição Tempo de retorno \beta-Mixing |
title_short |
Primeiro tempo de retorno para processos \\beta-mixing |
title_full |
Primeiro tempo de retorno para processos \\beta-mixing |
title_fullStr |
Primeiro tempo de retorno para processos \\beta-mixing |
title_full_unstemmed |
Primeiro tempo de retorno para processos \\beta-mixing |
title_sort |
Primeiro tempo de retorno para processos \\beta-mixing |
author |
Rada Mora, Erika Alejandra |
author_facet |
Rada Mora, Erika Alejandra |
author_role |
author |
dc.contributor.none.fl_str_mv |
Abadi, Miguel Natalio |
dc.contributor.author.fl_str_mv |
Rada Mora, Erika Alejandra |
dc.subject.por.fl_str_mv |
Convergence Convergência Mixing Overlapping Return times Sobreposição Tempo de retorno \beta-Mixing |
topic |
Convergence Convergência Mixing Overlapping Return times Sobreposição Tempo de retorno \beta-Mixing |
description |
Seja X um alfabeto finito ou infinito enumerável, e considere como X^n o conjunto de todas as sequências de tamanho n. No presente trabalho, nós consideramos a função Tn, definida em X^n e tomando valores entre 1 e infinito. Tn será o primeiro tempo que demora sequência de tamanho n, digamos w, em aparecer de novo sobre uma sequência infinita do processo que começa com w. Este tempo é conhecido como o tempo de retorno. Seja Sn(w) = n - Tn(w) o nosso objeto de estudo, definido também em X^n e tomando valores entre menos infinito e n-1. A função Sn foi colocada em evidência, entre outros casos, na análise estatística da Recorrência de Poincaré, e possui relação explícita com a entropia do processo. Abadi e Lambert, provaram a convergência da distribuição de Sn, quando a sequência é escolhida de acordo com a medida produto de n variáveis aleatórias independentes e identicamente distribuídas no alfabeto e como consequência, mostraram a convergência da esperança de Sn. Nosso trabalho consiste em generalizar o trabalho feito por Abadi e Lambert para processos com uma condição de dependência \\beta-mixing. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-26082014-181141/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-26082014-181141/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809091103067996160 |