Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-161912/ |
Resumo: | A sumarização automática multidocumento visa à produção de um sumário a partir de um conjunto de textos relacionados, para ser utilizado por um usuário particular e/ou para determinada tarefa. Com o crescimento exponencial das informações disponíveis e a necessidade das pessoas obterem a informação em um curto espaço de tempo, a tarefa de sumarização automática tem recebido muita atenção nos últimos tempos. Sabe-se que em um conjunto de textos relacionados existem informações redundantes, contraditórias e complementares, que representam os fenômenos multidocumento. Em cada texto-fonte, o assunto principal é descrito em uma sequência de subtópicos. Além disso, as sentenças de um texto-fonte possuem graus de relevância diferentes. Nesse contexto, espera-se que um sumário multidocumento consista das informações relevantes que representem o total de textos do conjunto. No entanto, as estratégias de sumarização automática multidocumento adotadas até o presente utilizam somente os relacionamentos entre textos e descartam a análise da estrutura textual de cada texto-fonte, resultando em sumários que são pouco representativos dos subtópicos textuais e menos informativos do que poderiam ser. A fim de tratar adequadamente a relevância das informações, os fenômenos multidocumento e a distribuição de subtópicos, neste trabalho de doutorado, investigou-se como modelar o processo de sumarização automática usando o conhecimento semântico-discursivo em métodos de seleção de conteúdo e o impacto disso para a produção de sumários mais informativos e representativos dos textos-fonte. Na formalização do conhecimento semântico-discursivo, foram utilizadas as teorias semântico-discursivas RST (Rhetorical Structure Theory) e CST (Cross-document Structure Theory). Para apoiar o trabalho, um córpus multidocumento foi anotado com RST e subtópicos, consistindo em um recurso disponível para outras pesquisas. A partir da análise de córpus, foram propostos 10 métodos de segmentação em subtópicos e 13 métodos inovadores de sumarização automática. A avaliação dos métodos de segmentação em subtópicos mostrou que existe uma forte relação entre a estrutura de subtópicos e a análise retórica de um texto. Quanto à avaliação dos métodos de sumarização automática, os resultados indicam que o uso do conhecimento semântico-discursivo em boas estratégias de seleção de conteúdo afeta positivamente a produção de sumários informativos. |
id |
USP_7f2baf2293a59032e46cfc14fa7edabf |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16032015-161912 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivoExploration of automatic methods for multi-document summarization using discourse modelsAutomatic summarizationDiscourse modelsModelos discursivosNatural language processingProcessamento de língua naturalSumarização automáticaA sumarização automática multidocumento visa à produção de um sumário a partir de um conjunto de textos relacionados, para ser utilizado por um usuário particular e/ou para determinada tarefa. Com o crescimento exponencial das informações disponíveis e a necessidade das pessoas obterem a informação em um curto espaço de tempo, a tarefa de sumarização automática tem recebido muita atenção nos últimos tempos. Sabe-se que em um conjunto de textos relacionados existem informações redundantes, contraditórias e complementares, que representam os fenômenos multidocumento. Em cada texto-fonte, o assunto principal é descrito em uma sequência de subtópicos. Além disso, as sentenças de um texto-fonte possuem graus de relevância diferentes. Nesse contexto, espera-se que um sumário multidocumento consista das informações relevantes que representem o total de textos do conjunto. No entanto, as estratégias de sumarização automática multidocumento adotadas até o presente utilizam somente os relacionamentos entre textos e descartam a análise da estrutura textual de cada texto-fonte, resultando em sumários que são pouco representativos dos subtópicos textuais e menos informativos do que poderiam ser. A fim de tratar adequadamente a relevância das informações, os fenômenos multidocumento e a distribuição de subtópicos, neste trabalho de doutorado, investigou-se como modelar o processo de sumarização automática usando o conhecimento semântico-discursivo em métodos de seleção de conteúdo e o impacto disso para a produção de sumários mais informativos e representativos dos textos-fonte. Na formalização do conhecimento semântico-discursivo, foram utilizadas as teorias semântico-discursivas RST (Rhetorical Structure Theory) e CST (Cross-document Structure Theory). Para apoiar o trabalho, um córpus multidocumento foi anotado com RST e subtópicos, consistindo em um recurso disponível para outras pesquisas. A partir da análise de córpus, foram propostos 10 métodos de segmentação em subtópicos e 13 métodos inovadores de sumarização automática. A avaliação dos métodos de segmentação em subtópicos mostrou que existe uma forte relação entre a estrutura de subtópicos e a análise retórica de um texto. Quanto à avaliação dos métodos de sumarização automática, os resultados indicam que o uso do conhecimento semântico-discursivo em boas estratégias de seleção de conteúdo afeta positivamente a produção de sumários informativos.The multi-document summarization aims at producing a summary from a set of related texts to be used for an individual or/and a particular task. Nowadays, with the exponential growth of available information and the peoples need to obtain information in a short time, the task of automatic summarization has received wide attention. It is known that in a set of related texts there are pieces of redundant, contradictory and complementary information that represent the multi-document phenomenon. In each source text, the main subject is described in a sequence of subtopics. Furthermore, some sentences in the same text are more relevant than others. Considering this context, it is expected that a multi-document summary consists of relevant information that represents a set of texts. However, strategies for automatic multi-document summarization adopted until now have used only the relationships between texts and dismissed the analysis of textual structure of each source text, resulting in summaries that are less representative of subtopics and less informative than they could be. In order to properly treat the relevance of information, multi-document phenomena and distribution of subtopics, in this thesis, we investigated how to model the summarization process using the semantic-discursive knowledge and its impact for producing more informative and representative summaries from source texts. In order to formalize the semantic-discursive knowledge, we adopted RST (Rhetorical Structure Theory) and CST (Cross-document Structure Theory) theories. To support the work, a multi-document corpus was annotated with RST and subtopics, consisting of a new resource available for other researchers. From the corpus analysis, 10 methods for subtopic segmentation and 13 orignal methods for automatic summarization were proposed. The assessment of methods for subtopic segmentation showed that there is a strong relationship between the subtopics structure and the rhetorical analysis of a text. In regards to the assessment of the methods for automatic summarization, the results indicate that the use of semantic-discursive knowledge in good strategies for content selection affects positively the production of informative summaries.Biblioteca Digitais de Teses e Dissertações da USPPardo, Thiago Alexandre SalgueiroCardoso, Paula Christina Figueira2014-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-161912/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-16032015-161912Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo Exploration of automatic methods for multi-document summarization using discourse models |
title |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo |
spellingShingle |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo Cardoso, Paula Christina Figueira Automatic summarization Discourse models Modelos discursivos Natural language processing Processamento de língua natural Sumarização automática |
title_short |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo |
title_full |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo |
title_fullStr |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo |
title_full_unstemmed |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo |
title_sort |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo |
author |
Cardoso, Paula Christina Figueira |
author_facet |
Cardoso, Paula Christina Figueira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pardo, Thiago Alexandre Salgueiro |
dc.contributor.author.fl_str_mv |
Cardoso, Paula Christina Figueira |
dc.subject.por.fl_str_mv |
Automatic summarization Discourse models Modelos discursivos Natural language processing Processamento de língua natural Sumarização automática |
topic |
Automatic summarization Discourse models Modelos discursivos Natural language processing Processamento de língua natural Sumarização automática |
description |
A sumarização automática multidocumento visa à produção de um sumário a partir de um conjunto de textos relacionados, para ser utilizado por um usuário particular e/ou para determinada tarefa. Com o crescimento exponencial das informações disponíveis e a necessidade das pessoas obterem a informação em um curto espaço de tempo, a tarefa de sumarização automática tem recebido muita atenção nos últimos tempos. Sabe-se que em um conjunto de textos relacionados existem informações redundantes, contraditórias e complementares, que representam os fenômenos multidocumento. Em cada texto-fonte, o assunto principal é descrito em uma sequência de subtópicos. Além disso, as sentenças de um texto-fonte possuem graus de relevância diferentes. Nesse contexto, espera-se que um sumário multidocumento consista das informações relevantes que representem o total de textos do conjunto. No entanto, as estratégias de sumarização automática multidocumento adotadas até o presente utilizam somente os relacionamentos entre textos e descartam a análise da estrutura textual de cada texto-fonte, resultando em sumários que são pouco representativos dos subtópicos textuais e menos informativos do que poderiam ser. A fim de tratar adequadamente a relevância das informações, os fenômenos multidocumento e a distribuição de subtópicos, neste trabalho de doutorado, investigou-se como modelar o processo de sumarização automática usando o conhecimento semântico-discursivo em métodos de seleção de conteúdo e o impacto disso para a produção de sumários mais informativos e representativos dos textos-fonte. Na formalização do conhecimento semântico-discursivo, foram utilizadas as teorias semântico-discursivas RST (Rhetorical Structure Theory) e CST (Cross-document Structure Theory). Para apoiar o trabalho, um córpus multidocumento foi anotado com RST e subtópicos, consistindo em um recurso disponível para outras pesquisas. A partir da análise de córpus, foram propostos 10 métodos de segmentação em subtópicos e 13 métodos inovadores de sumarização automática. A avaliação dos métodos de segmentação em subtópicos mostrou que existe uma forte relação entre a estrutura de subtópicos e a análise retórica de um texto. Quanto à avaliação dos métodos de sumarização automática, os resultados indicam que o uso do conhecimento semântico-discursivo em boas estratégias de seleção de conteúdo afeta positivamente a produção de sumários informativos. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-161912/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-161912/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257015610507264 |