Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere

Detalhes bibliográficos
Autor(a) principal: Ferrarezi, Jessica Aparecida
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11137/tde-06062024-170111/
Resumo: The beneficial plant-microbe associations have been widely explored with the purpose of understanding the mechanisms involved in this interaction, in order to develop bioinoculants for agriculture aiming at sustainability and reduction of chemical inputs use. Plant growth promoting bacteria (PGPB) have been reported as interesting alternatives to mineral fertilizers for a range of crops. The strains Azospirillum brasilense Ab-V5 and Bacillus thuringiensis (Bt) RZ2MS9 have shown significant effect in plant growth promotion, and for that they are classified as PGPB. However, the lack of holistic comprehension of PGPB-plant-native soil microbiome can lead to inconsistency of results in field conditions. Recent ecological theories reveal that plant microbiomes are organized as microbial hubs with keystone species and helpers. These microbial networks are strongly connected, molecularly modulated and can influence plant metabolism and physiology. The molecular modulation of such association can be accessed with the advance of high throughput sequencing and phenotyping technologies. It has been possible to access information about the plant-associated bacterial community (including those non-cultivable), correlate it with the main microbiota-modulating factors and physiological responses under influence of biostimulants. Thus, through metataxonomics, metagenomics and phenomics, the objective of this work is to characterize the microbial community associated with maize under influence of the potential keystone PGPB A. brasilense Ab-V5. The unprecedented approach through integration of omics data and a holistic view of the complex inoculant-plant-microbiome system were crucial to support the original development of a synthetic bacterial community (SynCom) with the purpose of promoting plant growth. To understand the role of A. brasilense Ab-V5 in microbiome, we conducted greenhouse experiments with metagenomics data, we dissected the potential naturally occurring microorganisms as PGPB candidates by assembling and characterizing high-quality metagenome-assembled genomes. We created a new collection of PGPB candidates by isolating, characterizing and selecting members from the native soil community from maize-cultivated field (CNM). The strain Arthrobacter sp. CNM05 demonstrated high potential as PGPB with a range of phenotypic attributes evaluated in vitro and in silico through genomic sequencing. With the addition of selected strains from the EMBRAPA database (AleloMicro), we designed and tested an omics data-driven SynCom. The results show that the inoculation of SynCom promoted faster germination of maize seeds compared to non-inoculated treatment. Furthermore, root and shoot traits responded positively to the SynCom+Ab-V5 application. Our results indicate that the development of the SynCom based on omics data is a promising approach to optimize the beneficial effects of inoculants for plant growth promotion. In addition, we also conducted a greenhouse experiment to evaluate the role of the gene aiiA encoder of acyl-homoserine lactonase (a molecule involved in quorum quenching-QQ system of Bt RZ2MS9), in interaction with the native bacterial community. We used a mutant Bt RZ2MS9 ΔaiiA previously obtained with CRISPR-Cas9. Our results indicate that QQ activity is an important mechanism for PGPB persistence in the rhizosphere. This implies the ability of PGPB to interfere with quorum sensing communication of other bacteria species might be relevant for the establishment of Bt RZ2MS9 in the native microbial community and, consequently, might be key for plant growth promotion and soil native microbiome modulation.
id USP_7f444b54ee5ae7bb36a40fbdb89da3ee
oai_identifier_str oai:teses.usp.br:tde-06062024-170111
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphereDesvendando o papel de bactérias promotoras de crescimento em plantas no recrutamento do microbioma da rizosfera do milhoBPCPsComunidade sintéticaEspécies-chaveKeystone speciesMicrobiomaMicrobiomeÔmicasOmicsPGPBPlant growth promotionPromoção de crescimento vegetalSynthetic communityThe beneficial plant-microbe associations have been widely explored with the purpose of understanding the mechanisms involved in this interaction, in order to develop bioinoculants for agriculture aiming at sustainability and reduction of chemical inputs use. Plant growth promoting bacteria (PGPB) have been reported as interesting alternatives to mineral fertilizers for a range of crops. The strains Azospirillum brasilense Ab-V5 and Bacillus thuringiensis (Bt) RZ2MS9 have shown significant effect in plant growth promotion, and for that they are classified as PGPB. However, the lack of holistic comprehension of PGPB-plant-native soil microbiome can lead to inconsistency of results in field conditions. Recent ecological theories reveal that plant microbiomes are organized as microbial hubs with keystone species and helpers. These microbial networks are strongly connected, molecularly modulated and can influence plant metabolism and physiology. The molecular modulation of such association can be accessed with the advance of high throughput sequencing and phenotyping technologies. It has been possible to access information about the plant-associated bacterial community (including those non-cultivable), correlate it with the main microbiota-modulating factors and physiological responses under influence of biostimulants. Thus, through metataxonomics, metagenomics and phenomics, the objective of this work is to characterize the microbial community associated with maize under influence of the potential keystone PGPB A. brasilense Ab-V5. The unprecedented approach through integration of omics data and a holistic view of the complex inoculant-plant-microbiome system were crucial to support the original development of a synthetic bacterial community (SynCom) with the purpose of promoting plant growth. To understand the role of A. brasilense Ab-V5 in microbiome, we conducted greenhouse experiments with metagenomics data, we dissected the potential naturally occurring microorganisms as PGPB candidates by assembling and characterizing high-quality metagenome-assembled genomes. We created a new collection of PGPB candidates by isolating, characterizing and selecting members from the native soil community from maize-cultivated field (CNM). The strain Arthrobacter sp. CNM05 demonstrated high potential as PGPB with a range of phenotypic attributes evaluated in vitro and in silico through genomic sequencing. With the addition of selected strains from the EMBRAPA database (AleloMicro), we designed and tested an omics data-driven SynCom. The results show that the inoculation of SynCom promoted faster germination of maize seeds compared to non-inoculated treatment. Furthermore, root and shoot traits responded positively to the SynCom+Ab-V5 application. Our results indicate that the development of the SynCom based on omics data is a promising approach to optimize the beneficial effects of inoculants for plant growth promotion. In addition, we also conducted a greenhouse experiment to evaluate the role of the gene aiiA encoder of acyl-homoserine lactonase (a molecule involved in quorum quenching-QQ system of Bt RZ2MS9), in interaction with the native bacterial community. We used a mutant Bt RZ2MS9 ΔaiiA previously obtained with CRISPR-Cas9. Our results indicate that QQ activity is an important mechanism for PGPB persistence in the rhizosphere. This implies the ability of PGPB to interfere with quorum sensing communication of other bacteria species might be relevant for the establishment of Bt RZ2MS9 in the native microbial community and, consequently, might be key for plant growth promotion and soil native microbiome modulation.Associações benéficas entre plantas e microrganismos têm sido amplamente exploradas com a finalidade de compreender os mecanismos envolvidos nessa interação, a fim de aplicá-los no desenvolvimento de inoculantes em sistemas agrícolas visando à sustentabilidade e redução do uso de insumos químicos. As bactérias promotoras de crescimento de plantas (BPCPs) têm sido apontadas como alternativas ao uso de fertilizantes minerais para diversas culturas. As linhagens Azospirillum brasilense Ab-V5 e Bacillus thuringiensis RZ2MS9 têm mostrado substancial efeito na promoção do crescimento vegetal de diversas culturas, e por isso são chamadas BPCPs. No entanto, a falta de entendimento de forma holística sobre interação BPCPs-planta-microbioma nativo do solo pode levar à inconsistência de seus efeitos em condições de campo. Recentes teorias ecológicas apontam que o microbioma de plantas se organiza em conglomerados contendo espécies-chave (keystone species) e recrutados (helpers). Essas redes microbianas são fortemente conectadas, moduladas molecularmente e podem influenciar o metabolismo e fisiologia das plantas às quais se associam. A modulação molecular dessa associação pode ser acessada com o avanço de tecnologias de sequenciamento em larga escala (high throughput) e de fenotipagem de alto rendimento. Atualmente, é possível acessar informações sobre a comunidade de bactérias associadas às plantas (incluindo as não-cultiváveis), correlacionar com os principais fatores de modulação da microbiota e com as respostas fisiológicas do vegetal sob influência dos bioestimulantes. Assim, por meio de dados de metataxonômica, metagenômica e fenômica de plantas, o presente trabalho teve como objetivo caracterizar a comunidade microbiana associada a milho sob influência de potenciais keystones A. brasilense Ab-V5 e B. thuringiensis RZ2MS9. A abordagem inédita por meio da integração das ômicas e uma visão holística de complexo sistema inoculantes-planta-microbioma foi crucial para apoiar o desenvolvimento de uma comunidade bacteriana sintética (SynCom) com o propósito de promover crescimento vegetal. Visando entender este sistema, foram realizados ensaios em casa de vegetação para avaliar o papel da linhagem Ab-V5 e da comunidade bacteriana sintética (SynCom) na promoção de crescimento de milho. Com dados metagenômicos, foi possível detalhar o potencial de microrganismos naturalmente presentes no solo como candidatas BPCP através da montagem e caracterização de genomas de alta qualidade a partir de metagenomas. A partir da coleta da comunidade nativa do solo cultivado com milho (CNM), foram realizados isolamento, caracterização dependente de cultivo in vitro e seleção de linhagens bacterianas candidatas a BPCP, além da seleção de outras linhagens presentes no banco de dados da EMBRAPA (AleloMicro) visando a construção da SynCom guiada por dados ômicos. A linhagem Arthrobacter sp. CNM05 se destacou pelo potencial como BPCP através de uma série de atributos fenotípicos avaliados in vitro e in silico através do sequenciamento genômico. Os resultados obtidos revelam que a inoculação com SynCom promoveu germinação mais rápida das sementes de milho em comparação com tratamento não-inoculado. Além disso, atributos radiculares e de parte aérea responderam positivamente à inoculação com SynCom e Ab-V5. Com isso, o desenvolvimento de SynCom com base em dados meta-ômicos se apresenta como uma abordagem promissora para otimizar os benefícios de inoculantes na promoção do crescimento vegetal. Adicionalmente, foi investigado o papel do gene aiiA codificador de acil-homoserina lactonase (uma molécula envolvida no sistema quorum quenching-QQ de Bt RZ2MS9), na interação com a comunidade bacteriana nativa. Para tanto foi utilizado um mutante Bt RZ2MS9 ΔaiiA obtido previamente por meio da técnica de CRISPR-Cas9. Os resultados indicam que a atividade QQ de Bt RZ2MS9 é um mecanismo importante para a persistência da BPCP na rizosfera. Isso implica que a habilidade de interferir na comunicação quorum sensing de outras espécies bacterianas seja relevante para o estabelecimento de Bt RZ2MS9 na comunidade microbiana nativa e, consequentemente, pode ser chave para a promoção do crescimento vegetal e modulação do microbioma nativo do solo.Biblioteca Digitais de Teses e Dissertações da USPVerdi, Maria Carolina QuecineFerrarezi, Jessica Aparecida2024-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-06062024-170111/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.info:eu-repo/semantics/openAccesseng2024-06-07T14:08:02Zoai:teses.usp.br:tde-06062024-170111Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-06-07T14:08:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
Desvendando o papel de bactérias promotoras de crescimento em plantas no recrutamento do microbioma da rizosfera do milho
title Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
spellingShingle Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
Ferrarezi, Jessica Aparecida
BPCPs
Comunidade sintética
Espécies-chave
Keystone species
Microbioma
Microbiome
Ômicas
Omics
PGPB
Plant growth promotion
Promoção de crescimento vegetal
Synthetic community
title_short Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
title_full Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
title_fullStr Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
title_full_unstemmed Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
title_sort Unraveling the role of plant growth-promoting bacteria in recruiting microbiome from maize rhizosphere
author Ferrarezi, Jessica Aparecida
author_facet Ferrarezi, Jessica Aparecida
author_role author
dc.contributor.none.fl_str_mv Verdi, Maria Carolina Quecine
dc.contributor.author.fl_str_mv Ferrarezi, Jessica Aparecida
dc.subject.por.fl_str_mv BPCPs
Comunidade sintética
Espécies-chave
Keystone species
Microbioma
Microbiome
Ômicas
Omics
PGPB
Plant growth promotion
Promoção de crescimento vegetal
Synthetic community
topic BPCPs
Comunidade sintética
Espécies-chave
Keystone species
Microbioma
Microbiome
Ômicas
Omics
PGPB
Plant growth promotion
Promoção de crescimento vegetal
Synthetic community
description The beneficial plant-microbe associations have been widely explored with the purpose of understanding the mechanisms involved in this interaction, in order to develop bioinoculants for agriculture aiming at sustainability and reduction of chemical inputs use. Plant growth promoting bacteria (PGPB) have been reported as interesting alternatives to mineral fertilizers for a range of crops. The strains Azospirillum brasilense Ab-V5 and Bacillus thuringiensis (Bt) RZ2MS9 have shown significant effect in plant growth promotion, and for that they are classified as PGPB. However, the lack of holistic comprehension of PGPB-plant-native soil microbiome can lead to inconsistency of results in field conditions. Recent ecological theories reveal that plant microbiomes are organized as microbial hubs with keystone species and helpers. These microbial networks are strongly connected, molecularly modulated and can influence plant metabolism and physiology. The molecular modulation of such association can be accessed with the advance of high throughput sequencing and phenotyping technologies. It has been possible to access information about the plant-associated bacterial community (including those non-cultivable), correlate it with the main microbiota-modulating factors and physiological responses under influence of biostimulants. Thus, through metataxonomics, metagenomics and phenomics, the objective of this work is to characterize the microbial community associated with maize under influence of the potential keystone PGPB A. brasilense Ab-V5. The unprecedented approach through integration of omics data and a holistic view of the complex inoculant-plant-microbiome system were crucial to support the original development of a synthetic bacterial community (SynCom) with the purpose of promoting plant growth. To understand the role of A. brasilense Ab-V5 in microbiome, we conducted greenhouse experiments with metagenomics data, we dissected the potential naturally occurring microorganisms as PGPB candidates by assembling and characterizing high-quality metagenome-assembled genomes. We created a new collection of PGPB candidates by isolating, characterizing and selecting members from the native soil community from maize-cultivated field (CNM). The strain Arthrobacter sp. CNM05 demonstrated high potential as PGPB with a range of phenotypic attributes evaluated in vitro and in silico through genomic sequencing. With the addition of selected strains from the EMBRAPA database (AleloMicro), we designed and tested an omics data-driven SynCom. The results show that the inoculation of SynCom promoted faster germination of maize seeds compared to non-inoculated treatment. Furthermore, root and shoot traits responded positively to the SynCom+Ab-V5 application. Our results indicate that the development of the SynCom based on omics data is a promising approach to optimize the beneficial effects of inoculants for plant growth promotion. In addition, we also conducted a greenhouse experiment to evaluate the role of the gene aiiA encoder of acyl-homoserine lactonase (a molecule involved in quorum quenching-QQ system of Bt RZ2MS9), in interaction with the native bacterial community. We used a mutant Bt RZ2MS9 ΔaiiA previously obtained with CRISPR-Cas9. Our results indicate that QQ activity is an important mechanism for PGPB persistence in the rhizosphere. This implies the ability of PGPB to interfere with quorum sensing communication of other bacteria species might be relevant for the establishment of Bt RZ2MS9 in the native microbial community and, consequently, might be key for plant growth promotion and soil native microbiome modulation.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11137/tde-06062024-170111/
url https://www.teses.usp.br/teses/disponiveis/11/11137/tde-06062024-170111/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256719538782208