Detecção autônoma de intrusões utilizando aprendizado de máquina

Detalhes bibliográficos
Autor(a) principal: Ferreira, Eduardo Alves
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28072011-160306/
Resumo: A evolução da tecnologia da informação popularizou o uso de sistemas computacionais para a automação de tarefas operacionais. As tarefas de implantação e manutenção desses sistemas computacionais, por outro lado, não acompanharam essa tendência de forma ágil, tendo sido, por anos, efetuadas de forma manual, implicando alto custo, baixa produtividade e pouca qualidade de serviço. A fim de preencher essa lacuna foi proposta uma iniciativa denominada Computação Autônoma, a qual visa prover capacidade de autogerenciamento a sistemas computacionais. Dentre os aspectos necessários para a construção de um sistema autônomo está a detecção de intrusão, responsável por monitorar o funcionamento e fluxos de dados de sistemas em busca de indícios de operações maliciosas. Dado esse contexto, este trabalho apresenta um sistema autônomo de detecção de intrusões em aplicações Web, baseado em técnicas de aprendizado de máquina com complexidade computacional próxima de linear. Esse sistema utiliza técnicas de agrupamento de dados e de detecção de novidades para caracterizar o comportamento normal de uma aplicação, buscando posteriormente por anomalias no funcionamento das aplicações. Observou-se que a técnica é capaz de detectar ataques com maior autonomia e menor dependência sobre contextos específicos em relação a trabalhos anteriores
id USP_80194c02d0222c67cd63caa84da06a07
oai_identifier_str oai:teses.usp.br:tde-28072011-160306
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Detecção autônoma de intrusões utilizando aprendizado de máquinaAutonomous intrusion detection via machine learningDetecção de intrusãoIntrusion detectionA evolução da tecnologia da informação popularizou o uso de sistemas computacionais para a automação de tarefas operacionais. As tarefas de implantação e manutenção desses sistemas computacionais, por outro lado, não acompanharam essa tendência de forma ágil, tendo sido, por anos, efetuadas de forma manual, implicando alto custo, baixa produtividade e pouca qualidade de serviço. A fim de preencher essa lacuna foi proposta uma iniciativa denominada Computação Autônoma, a qual visa prover capacidade de autogerenciamento a sistemas computacionais. Dentre os aspectos necessários para a construção de um sistema autônomo está a detecção de intrusão, responsável por monitorar o funcionamento e fluxos de dados de sistemas em busca de indícios de operações maliciosas. Dado esse contexto, este trabalho apresenta um sistema autônomo de detecção de intrusões em aplicações Web, baseado em técnicas de aprendizado de máquina com complexidade computacional próxima de linear. Esse sistema utiliza técnicas de agrupamento de dados e de detecção de novidades para caracterizar o comportamento normal de uma aplicação, buscando posteriormente por anomalias no funcionamento das aplicações. Observou-se que a técnica é capaz de detectar ataques com maior autonomia e menor dependência sobre contextos específicos em relação a trabalhos anterioresThe use of computers to automatically perform operational tasks is commonplace, thanks to the information technology evolution. The maintenance of computer systems, on the other hand, is commonly performed manually, resulting in high costs, low productivity and low quality of service. The Autonomous Computing initiative aims to approach this limitation, through selfmanagement of computer systems. In order to assemble a fully autonomous system, an intrusion detection application is needed to monitor the behavior and data flows on applications. Considering this context, an autonomous Web intrusion detection system is proposed, based on machine-learning techniques with near-linear computational complexity. This system is based on clustering and novelty detection techniques, characterizing an application behavior, to later pinpoint anomalies in live applications. By conducting experiments, we observed that this new approach is capable of detecting anomalies with less dependency on specific contexts than previous solutionsBiblioteca Digitais de Teses e Dissertações da USPMello, Rodrigo Fernandes deFerreira, Eduardo Alves2011-05-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-28072011-160306/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-28072011-160306Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção autônoma de intrusões utilizando aprendizado de máquina
Autonomous intrusion detection via machine learning
title Detecção autônoma de intrusões utilizando aprendizado de máquina
spellingShingle Detecção autônoma de intrusões utilizando aprendizado de máquina
Ferreira, Eduardo Alves
Detecção de intrusão
Intrusion detection
title_short Detecção autônoma de intrusões utilizando aprendizado de máquina
title_full Detecção autônoma de intrusões utilizando aprendizado de máquina
title_fullStr Detecção autônoma de intrusões utilizando aprendizado de máquina
title_full_unstemmed Detecção autônoma de intrusões utilizando aprendizado de máquina
title_sort Detecção autônoma de intrusões utilizando aprendizado de máquina
author Ferreira, Eduardo Alves
author_facet Ferreira, Eduardo Alves
author_role author
dc.contributor.none.fl_str_mv Mello, Rodrigo Fernandes de
dc.contributor.author.fl_str_mv Ferreira, Eduardo Alves
dc.subject.por.fl_str_mv Detecção de intrusão
Intrusion detection
topic Detecção de intrusão
Intrusion detection
description A evolução da tecnologia da informação popularizou o uso de sistemas computacionais para a automação de tarefas operacionais. As tarefas de implantação e manutenção desses sistemas computacionais, por outro lado, não acompanharam essa tendência de forma ágil, tendo sido, por anos, efetuadas de forma manual, implicando alto custo, baixa produtividade e pouca qualidade de serviço. A fim de preencher essa lacuna foi proposta uma iniciativa denominada Computação Autônoma, a qual visa prover capacidade de autogerenciamento a sistemas computacionais. Dentre os aspectos necessários para a construção de um sistema autônomo está a detecção de intrusão, responsável por monitorar o funcionamento e fluxos de dados de sistemas em busca de indícios de operações maliciosas. Dado esse contexto, este trabalho apresenta um sistema autônomo de detecção de intrusões em aplicações Web, baseado em técnicas de aprendizado de máquina com complexidade computacional próxima de linear. Esse sistema utiliza técnicas de agrupamento de dados e de detecção de novidades para caracterizar o comportamento normal de uma aplicação, buscando posteriormente por anomalias no funcionamento das aplicações. Observou-se que a técnica é capaz de detectar ataques com maior autonomia e menor dependência sobre contextos específicos em relação a trabalhos anteriores
publishDate 2011
dc.date.none.fl_str_mv 2011-05-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28072011-160306/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28072011-160306/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257437422223360