Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.

Detalhes bibliográficos
Autor(a) principal: Katsuno, Eduardo Tadashi
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-06012020-122009/
Resumo: In the last decades, research was carried out in the investigation of the effects of paintings on the performance of naval vessels. A large proportion of the publicly available research focused on paints that reduce the fouling and friction coefficient of the hulls of these vessels, such as hydrophobic paints. However, research applied to propellers is scarce. Covering the blade surface with paint exhibiting hydrophobic behavior changes the drag of the blades and, consequently, the torque required by the propeller. However, covering a blade fully can adversely affect the flow in certain regions, reducing the performance of the propeller or inducing cavitation inception. This project studies the distribution pattern of the super-hydrophobic surface (SHS) paint on model-scale propellers using the topology optimization method to determine regions where the application of surface treatment leads to improved propeller performance. Propeller simulations were carried out with full turbulent analysis using Reynolds-Averaged Navier-Stokes equations. The numerical method is developed to model the behavior of the boundary layer with boundary conditions that impose the low friction/hydrophobicity effect to predict the performance of a coated propeller. To obtain the topology optimization sensitivities, the discrete adjoint method of the Navier-Stokes equations with the hydrophobic model based on the slip length is studied. The numerical implementation is done by using the Star-CCM+ as the Computational Fluid Dynamics (CFD) software, based on the Finite Volume Method (FVM) as the primal and the adjoint solver, and Interior Point Optimizer (IPOPT) as the optimizer. Derivation of the discrete adjoint problem applied to super-hydrophobic modeling is shown. The application of topology optimization to the hydrophobic distribution on a two-dimensional cases are demonstrated (using internal and external flow as test cases), and for a threedimensional case (propeller). Despite that the SHS behavior is simplified by adopting the slip length model, the obtained results show that regions to be prioritized in order to reduce the dissipated energy is not always intuitive. Furthermore, depending on the operating condition, a fully-SHS case may not be the best option. The novel application of fluid Topology Optimization can be extended for other applications, such as problems of surface design.
id USP_8061e036668acae18433d09c7f6deed8
oai_identifier_str oai:teses.usp.br:tde-06012020-122009
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.Otimização topológica do padrão de pintura superficial sobre hélice em escala reduzida no desempenho hidrodinâmico.Adjoint methodAtritoCascosCFDCFDEmbarcaçõesHidrodinâmicaMétodo adjuntoOtimização topológicaPropellerPropulsorSHSSHSTopology optimizationIn the last decades, research was carried out in the investigation of the effects of paintings on the performance of naval vessels. A large proportion of the publicly available research focused on paints that reduce the fouling and friction coefficient of the hulls of these vessels, such as hydrophobic paints. However, research applied to propellers is scarce. Covering the blade surface with paint exhibiting hydrophobic behavior changes the drag of the blades and, consequently, the torque required by the propeller. However, covering a blade fully can adversely affect the flow in certain regions, reducing the performance of the propeller or inducing cavitation inception. This project studies the distribution pattern of the super-hydrophobic surface (SHS) paint on model-scale propellers using the topology optimization method to determine regions where the application of surface treatment leads to improved propeller performance. Propeller simulations were carried out with full turbulent analysis using Reynolds-Averaged Navier-Stokes equations. The numerical method is developed to model the behavior of the boundary layer with boundary conditions that impose the low friction/hydrophobicity effect to predict the performance of a coated propeller. To obtain the topology optimization sensitivities, the discrete adjoint method of the Navier-Stokes equations with the hydrophobic model based on the slip length is studied. The numerical implementation is done by using the Star-CCM+ as the Computational Fluid Dynamics (CFD) software, based on the Finite Volume Method (FVM) as the primal and the adjoint solver, and Interior Point Optimizer (IPOPT) as the optimizer. Derivation of the discrete adjoint problem applied to super-hydrophobic modeling is shown. The application of topology optimization to the hydrophobic distribution on a two-dimensional cases are demonstrated (using internal and external flow as test cases), and for a threedimensional case (propeller). Despite that the SHS behavior is simplified by adopting the slip length model, the obtained results show that regions to be prioritized in order to reduce the dissipated energy is not always intuitive. Furthermore, depending on the operating condition, a fully-SHS case may not be the best option. The novel application of fluid Topology Optimization can be extended for other applications, such as problems of surface design.Nas últimas décadas, pesquisas foram realizadas na investigação dos efeitos de pinturas no desempenho de embarcações navais. Parte considerável das pesquisas disponíveis ao público foca em tintas que reduzem a incrustação e o atrito dos cascos dessas embarcações, tais como tintas hidrofóbicas. No entanto, pesquisas aplicadas aos hélices são escassas. Revestir a superfície da pá de um propulsor com tinta com comportamento hidrofóbico altera o arrasto de fricção e consequentemente o torque requerido pelo hélice. Cobrir totalmente uma pá pode afetar negativamente o escoamento em determinadas regiões, reduzindo o desempenho da hélice ou induzindo a cavitação. Este projeto estuda o padrão de distribuição de tinta de aplicação de superfície super-hidrofóbica (SHS) em hélices em escala modelo usando o método de otimização topológica para determinar regiões onde sua aplicação na superfície melhora o desempenho do hélice. As simulações dos hélices foram realizadas com modelos de turbulência, usando as equações de Reynolds-Averaged Navier-Stokes. O método numérico é desenvolvido para modelar o comportamento da camada limite com condições de contorno que impõem o efeito de baixa fricção / hidrofobia para estimar o desempenho de um hélice. Para obter as sensibilidades de otimização topológica, estudase o método adjunto discreto das equações de Navier-Stokes com o modelo hidrofóbico baseado no comprimento do escorregamento. A implementação numérica é feita usando o Star-CCM + como software de fluidodinâmica computacional (CFD), baseado no método dos volumes finitos (MVF), como solver do problema primal e do adjunto, e o otimizador de ponto-interior (IPOPT). É deduzida a derivação do problema adjunto discreto aplicado ao modelo de super-hidrofobia. A aplicação da otimização topológica aplicado à distribuição hidrofóbica em casos bidimensionais é demonstrada (usando casos de escoamento interno e externo) e para um caso tridimensional (hélice). Apesar de o comportamento do SHS ser simplificado com a adoção do modelo de comprimento de escorregamento, os resultados obtidos mostram que as regiões a serem priorizadas para reduzir a energia dissipada nem sempre são intuitivas. Além disso, dependendo das condições de operação, uma pá totalmente SHS pode não ser a melhor opção. A nova aplicação da otimização topológica de fluidos pode ser estendida para outras aplicações, como problemas de projetos de superfície.Biblioteca Digitais de Teses e Dissertações da USPDantas, João Lucas DozziSilva, Emilio Carlos NelliKatsuno, Eduardo Tadashi2019-10-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3152/tde-06012020-122009/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-01-06T21:50:02Zoai:teses.usp.br:tde-06012020-122009Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-01-06T21:50:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
Otimização topológica do padrão de pintura superficial sobre hélice em escala reduzida no desempenho hidrodinâmico.
title Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
spellingShingle Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
Katsuno, Eduardo Tadashi
Adjoint method
Atrito
Cascos
CFD
CFD
Embarcações
Hidrodinâmica
Método adjunto
Otimização topológica
Propeller
Propulsor
SHS
SHS
Topology optimization
title_short Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
title_full Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
title_fullStr Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
title_full_unstemmed Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
title_sort Topology optimization of the superficial painting pattern on model-scale propellers applied for hydrodynamic performance.
author Katsuno, Eduardo Tadashi
author_facet Katsuno, Eduardo Tadashi
author_role author
dc.contributor.none.fl_str_mv Dantas, João Lucas Dozzi
Silva, Emilio Carlos Nelli
dc.contributor.author.fl_str_mv Katsuno, Eduardo Tadashi
dc.subject.por.fl_str_mv Adjoint method
Atrito
Cascos
CFD
CFD
Embarcações
Hidrodinâmica
Método adjunto
Otimização topológica
Propeller
Propulsor
SHS
SHS
Topology optimization
topic Adjoint method
Atrito
Cascos
CFD
CFD
Embarcações
Hidrodinâmica
Método adjunto
Otimização topológica
Propeller
Propulsor
SHS
SHS
Topology optimization
description In the last decades, research was carried out in the investigation of the effects of paintings on the performance of naval vessels. A large proportion of the publicly available research focused on paints that reduce the fouling and friction coefficient of the hulls of these vessels, such as hydrophobic paints. However, research applied to propellers is scarce. Covering the blade surface with paint exhibiting hydrophobic behavior changes the drag of the blades and, consequently, the torque required by the propeller. However, covering a blade fully can adversely affect the flow in certain regions, reducing the performance of the propeller or inducing cavitation inception. This project studies the distribution pattern of the super-hydrophobic surface (SHS) paint on model-scale propellers using the topology optimization method to determine regions where the application of surface treatment leads to improved propeller performance. Propeller simulations were carried out with full turbulent analysis using Reynolds-Averaged Navier-Stokes equations. The numerical method is developed to model the behavior of the boundary layer with boundary conditions that impose the low friction/hydrophobicity effect to predict the performance of a coated propeller. To obtain the topology optimization sensitivities, the discrete adjoint method of the Navier-Stokes equations with the hydrophobic model based on the slip length is studied. The numerical implementation is done by using the Star-CCM+ as the Computational Fluid Dynamics (CFD) software, based on the Finite Volume Method (FVM) as the primal and the adjoint solver, and Interior Point Optimizer (IPOPT) as the optimizer. Derivation of the discrete adjoint problem applied to super-hydrophobic modeling is shown. The application of topology optimization to the hydrophobic distribution on a two-dimensional cases are demonstrated (using internal and external flow as test cases), and for a threedimensional case (propeller). Despite that the SHS behavior is simplified by adopting the slip length model, the obtained results show that regions to be prioritized in order to reduce the dissipated energy is not always intuitive. Furthermore, depending on the operating condition, a fully-SHS case may not be the best option. The novel application of fluid Topology Optimization can be extended for other applications, such as problems of surface design.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3152/tde-06012020-122009/
url http://www.teses.usp.br/teses/disponiveis/3/3152/tde-06012020-122009/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090432358940672