Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/43/43134/tde-09052008-095040/ |
Resumo: | No presente trabalho foi estudada a dinâmica de um sistema de muitas partículas no regime de temperaturas ultra-baixas. Realizamos um estudo dinâmico de sistemas condensados bidimensionais em uma rede óptica não-linear em uma direção e também na presença de uma armadilha harmônica assimétrica. Investigamos alguns aspectos sobre a estabilização e propagação de sólitons em condensados de Bose-Einstein. O colapso da função de onda é evitado pela não-linearidade periódica dissipativa, no caso de um meio com campo de fundo positivo (com sistemas atômicos atrativos). A variação adiabática do comprimento de espalhamento de fundo leva a existência de sólitons de onda de matéria metaestáveis. Um sóliton dissipativo pode existir no meio atrativo bidimensional (2D) com uma não-linearidade periódica unidimensional (1D), quando um mecanismo de alimentação atômica é utilizado. Um sóliton estável pode existir no caso de condensados repulsivos, em um campo de fundo negativo, com uma armadilha harmônica em uma direção e uma rede óptica não-linear na outra direção. Os resultados inteiramente numéricos, para a equação de Gross-Pitaevskii 2D, confirmam as simulações da abordagem variacional. |
id |
USP_80739d9f17200a5119f3cdd130728bb0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09052008-095040 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo.Nonlinear systems applied to atomic condensates with time-dependent interactions.Bose-Einstein condensationCondensação de Bose-EinsteinCrank-NicolsonCrank-NicolsonEquação de Gross-PitaevskiiGross-Pitaevskii equationNumerical simulation.Simulação numérica.SolitonsSólitonsNo presente trabalho foi estudada a dinâmica de um sistema de muitas partículas no regime de temperaturas ultra-baixas. Realizamos um estudo dinâmico de sistemas condensados bidimensionais em uma rede óptica não-linear em uma direção e também na presença de uma armadilha harmônica assimétrica. Investigamos alguns aspectos sobre a estabilização e propagação de sólitons em condensados de Bose-Einstein. O colapso da função de onda é evitado pela não-linearidade periódica dissipativa, no caso de um meio com campo de fundo positivo (com sistemas atômicos atrativos). A variação adiabática do comprimento de espalhamento de fundo leva a existência de sólitons de onda de matéria metaestáveis. Um sóliton dissipativo pode existir no meio atrativo bidimensional (2D) com uma não-linearidade periódica unidimensional (1D), quando um mecanismo de alimentação atômica é utilizado. Um sóliton estável pode existir no caso de condensados repulsivos, em um campo de fundo negativo, com uma armadilha harmônica em uma direção e uma rede óptica não-linear na outra direção. Os resultados inteiramente numéricos, para a equação de Gross-Pitaevskii 2D, confirmam as simulações da abordagem variacional.In this work the dynamics of a system of many particles in a ultra-low temperature regime was studied. We performed a dynamic study of two-dimensional condensate systems into a nonlinear optical lattice in one direction and also in the presence of an asymmetrical harmonic trap. We investigated some aspects of the stabilization and spread of solitons in a Bose-Einstein condensate. In the case of positive background field media (with attractive atomic systems), the collapse of the wave-packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in an attractive bidimensional (2D) media with unidimensional (1D) periodic nonlinearity. In the case of repulsive condensates, with a negative background field, a stable soliton may exist when we have an harmonic trap in one direction and a nonlinear optical lattice in the other. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.Biblioteca Digitais de Teses e Dissertações da USPTomio, LauroLuz, Hedhio Luiz Francisco da2008-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-09052008-095040/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-09052008-095040Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. Nonlinear systems applied to atomic condensates with time-dependent interactions. |
title |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. |
spellingShingle |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. Luz, Hedhio Luiz Francisco da Bose-Einstein condensation Condensação de Bose-Einstein Crank-Nicolson Crank-Nicolson Equação de Gross-Pitaevskii Gross-Pitaevskii equation Numerical simulation. Simulação numérica. Solitons Sólitons |
title_short |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. |
title_full |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. |
title_fullStr |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. |
title_full_unstemmed |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. |
title_sort |
Sistemas não-lineares aplicados a condensados atômicos com interações dependentes do tempo. |
author |
Luz, Hedhio Luiz Francisco da |
author_facet |
Luz, Hedhio Luiz Francisco da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Tomio, Lauro |
dc.contributor.author.fl_str_mv |
Luz, Hedhio Luiz Francisco da |
dc.subject.por.fl_str_mv |
Bose-Einstein condensation Condensação de Bose-Einstein Crank-Nicolson Crank-Nicolson Equação de Gross-Pitaevskii Gross-Pitaevskii equation Numerical simulation. Simulação numérica. Solitons Sólitons |
topic |
Bose-Einstein condensation Condensação de Bose-Einstein Crank-Nicolson Crank-Nicolson Equação de Gross-Pitaevskii Gross-Pitaevskii equation Numerical simulation. Simulação numérica. Solitons Sólitons |
description |
No presente trabalho foi estudada a dinâmica de um sistema de muitas partículas no regime de temperaturas ultra-baixas. Realizamos um estudo dinâmico de sistemas condensados bidimensionais em uma rede óptica não-linear em uma direção e também na presença de uma armadilha harmônica assimétrica. Investigamos alguns aspectos sobre a estabilização e propagação de sólitons em condensados de Bose-Einstein. O colapso da função de onda é evitado pela não-linearidade periódica dissipativa, no caso de um meio com campo de fundo positivo (com sistemas atômicos atrativos). A variação adiabática do comprimento de espalhamento de fundo leva a existência de sólitons de onda de matéria metaestáveis. Um sóliton dissipativo pode existir no meio atrativo bidimensional (2D) com uma não-linearidade periódica unidimensional (1D), quando um mecanismo de alimentação atômica é utilizado. Um sóliton estável pode existir no caso de condensados repulsivos, em um campo de fundo negativo, com uma armadilha harmônica em uma direção e uma rede óptica não-linear na outra direção. Os resultados inteiramente numéricos, para a equação de Gross-Pitaevskii 2D, confirmam as simulações da abordagem variacional. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-03-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-09052008-095040/ |
url |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-09052008-095040/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256831294963712 |