Synthesizing interpretable strategies for real-time planning in zero-sum games
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21122021-111842/ |
Resumo: | Interpretable and explainable Artificial Intelligence (AI) is projected as one of the most important topics for the community in the next years. In addition to developing effective AI approaches that can help humans solving problems, it might be necessary to understand the reasons behind the decisions of such approaches to finally trust in their behavior. Search and learning-based algorithms represent the current state-of-the-art approaches for planning in zero-sum real-time games. The problem with those approaches is that usually the behavior of their resulting agents is not interpretable. On the other hand, hard-coded programs usually are not as effective as searchbased methods but have an important vantage; they can be more easily interpretable. In this thesis, we present a collection of works where we approach the problem of synthesizing effective interpretable scripts for planning in zero-sum real-time domains. First, we approach the problem of generating a set of scripts that can be used as an action abstraction to reduce search action spaces in zero-sum real-time strategy games. Namely, we present an evolutionary approach that can generate action abstractions that search-based algorithms can use for planning. Search-based systems that use action abstractions generated by our system outperformed the state-of-the-art search-based methods we use for experiments and won the 2018 mRTS competition. We also present Gesy and LS2, two systems focused on synthesizing scripts that can plan by themselves in zero-sum real-time strategy games. Gesy is a system that uses a Genetic Programming (GP) approach to synthesize interpretable scripts. LS2 is a system that combines a novel method to reduce Domain-Specific Languages (DSLs), and a local-search algorithm that uses self play to synthesize interpretable scripts. The scripts Gesy and LS2 synthesize are competitive with complex search-based methods and scripts designed by professional programmers. We also show that the scripts synthesized by both systems can be used to discover possible optimizations that programmers could include in their implementations. |
id |
USP_80e15658d4a9ca80cabf5f37442f0afc |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21122021-111842 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Synthesizing interpretable strategies for real-time planning in zero-sum gamesSintetizando estratégias interpretáveis para o planejamento em tempo real em jogos de suma zeroAlgoritmo de buscaAlgoritmo evolutivoArtificial intelligenceEvolutionary algorithmGamesInteligência artificialJogosProgram synthesisRTSRTSSearch algorithmSelf playSelf-playSíntese de programasSoma zeroZero-sumInterpretable and explainable Artificial Intelligence (AI) is projected as one of the most important topics for the community in the next years. In addition to developing effective AI approaches that can help humans solving problems, it might be necessary to understand the reasons behind the decisions of such approaches to finally trust in their behavior. Search and learning-based algorithms represent the current state-of-the-art approaches for planning in zero-sum real-time games. The problem with those approaches is that usually the behavior of their resulting agents is not interpretable. On the other hand, hard-coded programs usually are not as effective as searchbased methods but have an important vantage; they can be more easily interpretable. In this thesis, we present a collection of works where we approach the problem of synthesizing effective interpretable scripts for planning in zero-sum real-time domains. First, we approach the problem of generating a set of scripts that can be used as an action abstraction to reduce search action spaces in zero-sum real-time strategy games. Namely, we present an evolutionary approach that can generate action abstractions that search-based algorithms can use for planning. Search-based systems that use action abstractions generated by our system outperformed the state-of-the-art search-based methods we use for experiments and won the 2018 mRTS competition. We also present Gesy and LS2, two systems focused on synthesizing scripts that can plan by themselves in zero-sum real-time strategy games. Gesy is a system that uses a Genetic Programming (GP) approach to synthesize interpretable scripts. LS2 is a system that combines a novel method to reduce Domain-Specific Languages (DSLs), and a local-search algorithm that uses self play to synthesize interpretable scripts. The scripts Gesy and LS2 synthesize are competitive with complex search-based methods and scripts designed by professional programmers. We also show that the scripts synthesized by both systems can be used to discover possible optimizations that programmers could include in their implementations.A Inteligência Artificial (IA) interpretável e explicável é projetada como um dos temas mais importantes para a comunidade nos próximos anos. Além de desenvolver abordagens eficazes de IA que possam ajudar aos humanos a resolver problemas, pode ser necessário entender as razões por trás das decisões de tais abordagens para finalmente confiar em seu comportamento. Os algoritmos baseados em busca e aprendizagem representam o estado da arte para o planejamento em jogos de soma zero em tempo real. O problema com essas abordagens é que geralmente o comportamento de seus agentes resultantes não é interpretável. Por outro lado, scripts geralmente não são tão eficazes quanto os métodos de busca, mas têm uma vantagem importante; eles podem ser mais facilmente interpretáveis. Nesta tese, apresentamos uma coleção de trabalhos onde abordamos o problema de sintetizar scripts interpretáveis e eficazes para o planejamento em domínios de tempo real de soma zero. Primeiro, abordamos o problema de gerar um conjunto de scripts que pode ser usado como uma abstração de ação para reduzir os espaços de busca de ações em jogos em tempo real de soma zero. Apresentamos uma abordagem evolutiva que pode gerar abstrações de ação que algoritmos baseados em busca podem usar para o planejamento. Sistemas baseados em busca que usam abstrações de ação geradas por nosso sistema superaram os métodos de busca do estado da arte que usamos nos experimentos, e venceram a competição mRTS do 2018. Também apresentamos o Gesy e o LS2, dois sistemas focados em sintetizar scripts que podem ser usados por si sós para planejamento em jogos em tempo real de soma zero. Gesy é um sistema que usa uma abordagem de Programação Genética (GP) para sintetizar scripts interpretáveis. LS2 é um sistema que combina um novo método para reduzir Linguagens Específicas de Domínio (DSLs) e um algoritmo de busca local que usa a self-play para sintetizar scripts interpretáveis. Os scripts que Gesy e LS2 sintetizam são competitivos com métodos complexos baseados em busca e scripts codificados por programadores profissionais. Também mostramos que os scripts sintetizados pelos dois sistemas podem ser usados para descobrir possíveis otimizações que os programadores poderiam incluir em suas implementações.Biblioteca Digitais de Teses e Dissertações da USPToledo, Cláudio Fabiano MottaMariño, Julian Ricardo Hernandez2021-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-21122021-111842/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-12-21T13:26:02Zoai:teses.usp.br:tde-21122021-111842Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-12-21T13:26:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Synthesizing interpretable strategies for real-time planning in zero-sum games Sintetizando estratégias interpretáveis para o planejamento em tempo real em jogos de suma zero |
title |
Synthesizing interpretable strategies for real-time planning in zero-sum games |
spellingShingle |
Synthesizing interpretable strategies for real-time planning in zero-sum games Mariño, Julian Ricardo Hernandez Algoritmo de busca Algoritmo evolutivo Artificial intelligence Evolutionary algorithm Games Inteligência artificial Jogos Program synthesis RTS RTS Search algorithm Self play Self-play Síntese de programas Soma zero Zero-sum |
title_short |
Synthesizing interpretable strategies for real-time planning in zero-sum games |
title_full |
Synthesizing interpretable strategies for real-time planning in zero-sum games |
title_fullStr |
Synthesizing interpretable strategies for real-time planning in zero-sum games |
title_full_unstemmed |
Synthesizing interpretable strategies for real-time planning in zero-sum games |
title_sort |
Synthesizing interpretable strategies for real-time planning in zero-sum games |
author |
Mariño, Julian Ricardo Hernandez |
author_facet |
Mariño, Julian Ricardo Hernandez |
author_role |
author |
dc.contributor.none.fl_str_mv |
Toledo, Cláudio Fabiano Motta |
dc.contributor.author.fl_str_mv |
Mariño, Julian Ricardo Hernandez |
dc.subject.por.fl_str_mv |
Algoritmo de busca Algoritmo evolutivo Artificial intelligence Evolutionary algorithm Games Inteligência artificial Jogos Program synthesis RTS RTS Search algorithm Self play Self-play Síntese de programas Soma zero Zero-sum |
topic |
Algoritmo de busca Algoritmo evolutivo Artificial intelligence Evolutionary algorithm Games Inteligência artificial Jogos Program synthesis RTS RTS Search algorithm Self play Self-play Síntese de programas Soma zero Zero-sum |
description |
Interpretable and explainable Artificial Intelligence (AI) is projected as one of the most important topics for the community in the next years. In addition to developing effective AI approaches that can help humans solving problems, it might be necessary to understand the reasons behind the decisions of such approaches to finally trust in their behavior. Search and learning-based algorithms represent the current state-of-the-art approaches for planning in zero-sum real-time games. The problem with those approaches is that usually the behavior of their resulting agents is not interpretable. On the other hand, hard-coded programs usually are not as effective as searchbased methods but have an important vantage; they can be more easily interpretable. In this thesis, we present a collection of works where we approach the problem of synthesizing effective interpretable scripts for planning in zero-sum real-time domains. First, we approach the problem of generating a set of scripts that can be used as an action abstraction to reduce search action spaces in zero-sum real-time strategy games. Namely, we present an evolutionary approach that can generate action abstractions that search-based algorithms can use for planning. Search-based systems that use action abstractions generated by our system outperformed the state-of-the-art search-based methods we use for experiments and won the 2018 mRTS competition. We also present Gesy and LS2, two systems focused on synthesizing scripts that can plan by themselves in zero-sum real-time strategy games. Gesy is a system that uses a Genetic Programming (GP) approach to synthesize interpretable scripts. LS2 is a system that combines a novel method to reduce Domain-Specific Languages (DSLs), and a local-search algorithm that uses self play to synthesize interpretable scripts. The scripts Gesy and LS2 synthesize are competitive with complex search-based methods and scripts designed by professional programmers. We also show that the scripts synthesized by both systems can be used to discover possible optimizations that programmers could include in their implementations. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21122021-111842/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21122021-111842/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257256763064320 |