"Classificação de páginas na internet"
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092003-101358/ |
Resumo: | O grande crescimento da Internet ocorreu a partir da década de 1990 com o surgimento dos provedores comerciais de serviços, e resulta principalmente da boa aceitação e vasta disseminação do uso da Web. O grande problema que afeta a escalabilidade e o uso de tal serviço refere-se à organização e à classificação de seu conteúdo. Os engenhos de busca atuais possibilitam a localização de páginas na Web pela comparação léxica de conjuntos de palavras perante os conteúdos dos hipertextos. Tal mecanismo mostra-se ineficaz quando da necessidade pela localização de conteúdos que expressem conceitos ou objetos, a exemplo de produtos à venda oferecidos em sites de comércio eletrônico. A criação da Web Semântica foi anunciada no ano de 2000 para esse propósito, visando o estabelecimento de novos padrões para a representação formal de conteúdos nas páginas Web. Com sua implantação, cujo prazo inicialmente previsto foi de dez anos, será possível a expressão de conceitos nos conteúdos dos hipertextos, que representarão objetos classificados por uma ontologia, viabilizando assim o uso de sistemas, baseados em conhecimento, implementados por agentes inteligentes de software. O projeto DEEPSIA foi concebido como uma solução centrada no comprador, ao contrário dos atuais Market Places, para resolver o problema da localização de páginas Web com a descrição de produtos à venda, fazendo uso de métodos de classificação de textos, apoiados pelos algoritmos k-NN e C4.5, no suporte ao processo decisório realizado por um agente previsto em sua arquitetura, o Crawler Agent. Os testes com o sistema em sites brasileiros denotaram a necessidade pela sua adaptação em diversos aspectos, incluindo-se o processo decisório envolvido, que foi abordado pelo presente trabalho. A solução para o problema envolveu a aplicação e a avaliação do método Support Vector Machines, e é descrita em detalhes. |
id |
USP_814d710ed458a05eb48ad37ce5ce0a43 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12092003-101358 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
"Classificação de páginas na internet" "Internet pages classification"agentagenteClassificação de Textoscomércio eletrônicoDEEPSIADEEPSIAelectronic commerceontologiaontologySupport Vector MachinesSupport Vector Machinestext classificationWebWebO grande crescimento da Internet ocorreu a partir da década de 1990 com o surgimento dos provedores comerciais de serviços, e resulta principalmente da boa aceitação e vasta disseminação do uso da Web. O grande problema que afeta a escalabilidade e o uso de tal serviço refere-se à organização e à classificação de seu conteúdo. Os engenhos de busca atuais possibilitam a localização de páginas na Web pela comparação léxica de conjuntos de palavras perante os conteúdos dos hipertextos. Tal mecanismo mostra-se ineficaz quando da necessidade pela localização de conteúdos que expressem conceitos ou objetos, a exemplo de produtos à venda oferecidos em sites de comércio eletrônico. A criação da Web Semântica foi anunciada no ano de 2000 para esse propósito, visando o estabelecimento de novos padrões para a representação formal de conteúdos nas páginas Web. Com sua implantação, cujo prazo inicialmente previsto foi de dez anos, será possível a expressão de conceitos nos conteúdos dos hipertextos, que representarão objetos classificados por uma ontologia, viabilizando assim o uso de sistemas, baseados em conhecimento, implementados por agentes inteligentes de software. O projeto DEEPSIA foi concebido como uma solução centrada no comprador, ao contrário dos atuais Market Places, para resolver o problema da localização de páginas Web com a descrição de produtos à venda, fazendo uso de métodos de classificação de textos, apoiados pelos algoritmos k-NN e C4.5, no suporte ao processo decisório realizado por um agente previsto em sua arquitetura, o Crawler Agent. Os testes com o sistema em sites brasileiros denotaram a necessidade pela sua adaptação em diversos aspectos, incluindo-se o processo decisório envolvido, que foi abordado pelo presente trabalho. A solução para o problema envolveu a aplicação e a avaliação do método Support Vector Machines, e é descrita em detalhes.The huge growth of the Internet has been occurring since 90s with the arrival of the internet service providers. One important reason is the good acceptance and wide dissemination of the Web. The main problem that affects its scalability and usage is the organization and classification of its content. The current search engines make possible the localization of pages in the Web by means of a lexical comparison among sets of words and the hypertexts contents. In order to find contents that express concepts or object, such as products for sale in electronic commerce sites such mechanisms are inefficient. The proposition of the Semantic Web was announced in 2000 for this purpose, envisioning the establishment of new standards for formal contents representation in the Web pages. With its implementation, whose deadline was initially stated for ten years, it will be possible to express concepts in hypertexts contents, that will fully represent objects classified into an ontology, making possible the use of knowledge based systems implemented by intelligent softwares agents. The DEEPSIA project was conceived as a solution centered in the purchaser, instead of current Market Places, in order to solve the problem of finding Web pages with products for sale description, making use of methods of text classification, with k-NN and C4.5 algorithms, to support the decision problem to be solved by an specific agent designed, the Crawler Agent. The tests of the system in Brazilian sites have denoted the necessity for its adaptation in many aspects, including the involved decision process, which was focused in present work. The solution for the problem includes the application and evaluation of the Support Vector Machines method, and it is described in detail.Biblioteca Digitais de Teses e Dissertações da USPMoreira, Edson dos SantosMartins Júnior, José2003-04-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092003-101358/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-12092003-101358Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
"Classificação de páginas na internet" "Internet pages classification" |
title |
"Classificação de páginas na internet" |
spellingShingle |
"Classificação de páginas na internet" Martins Júnior, José agent agente Classificação de Textos comércio eletrônico DEEPSIA DEEPSIA electronic commerce ontologia ontology Support Vector Machines Support Vector Machines text classification Web Web |
title_short |
"Classificação de páginas na internet" |
title_full |
"Classificação de páginas na internet" |
title_fullStr |
"Classificação de páginas na internet" |
title_full_unstemmed |
"Classificação de páginas na internet" |
title_sort |
"Classificação de páginas na internet" |
author |
Martins Júnior, José |
author_facet |
Martins Júnior, José |
author_role |
author |
dc.contributor.none.fl_str_mv |
Moreira, Edson dos Santos |
dc.contributor.author.fl_str_mv |
Martins Júnior, José |
dc.subject.por.fl_str_mv |
agent agente Classificação de Textos comércio eletrônico DEEPSIA DEEPSIA electronic commerce ontologia ontology Support Vector Machines Support Vector Machines text classification Web Web |
topic |
agent agente Classificação de Textos comércio eletrônico DEEPSIA DEEPSIA electronic commerce ontologia ontology Support Vector Machines Support Vector Machines text classification Web Web |
description |
O grande crescimento da Internet ocorreu a partir da década de 1990 com o surgimento dos provedores comerciais de serviços, e resulta principalmente da boa aceitação e vasta disseminação do uso da Web. O grande problema que afeta a escalabilidade e o uso de tal serviço refere-se à organização e à classificação de seu conteúdo. Os engenhos de busca atuais possibilitam a localização de páginas na Web pela comparação léxica de conjuntos de palavras perante os conteúdos dos hipertextos. Tal mecanismo mostra-se ineficaz quando da necessidade pela localização de conteúdos que expressem conceitos ou objetos, a exemplo de produtos à venda oferecidos em sites de comércio eletrônico. A criação da Web Semântica foi anunciada no ano de 2000 para esse propósito, visando o estabelecimento de novos padrões para a representação formal de conteúdos nas páginas Web. Com sua implantação, cujo prazo inicialmente previsto foi de dez anos, será possível a expressão de conceitos nos conteúdos dos hipertextos, que representarão objetos classificados por uma ontologia, viabilizando assim o uso de sistemas, baseados em conhecimento, implementados por agentes inteligentes de software. O projeto DEEPSIA foi concebido como uma solução centrada no comprador, ao contrário dos atuais Market Places, para resolver o problema da localização de páginas Web com a descrição de produtos à venda, fazendo uso de métodos de classificação de textos, apoiados pelos algoritmos k-NN e C4.5, no suporte ao processo decisório realizado por um agente previsto em sua arquitetura, o Crawler Agent. Os testes com o sistema em sites brasileiros denotaram a necessidade pela sua adaptação em diversos aspectos, incluindo-se o processo decisório envolvido, que foi abordado pelo presente trabalho. A solução para o problema envolveu a aplicação e a avaliação do método Support Vector Machines, e é descrita em detalhes. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-04-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092003-101358/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092003-101358/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256990642864128 |