Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.

Detalhes bibliográficos
Autor(a) principal: Moura, Fernando Silva de
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-01082013-154423/
Resumo: A Tomografia por Impedância Elétrica tem como objetivo estimar a distribuição de impedância elétrica dentro de uma região a partir de medidas de potencial elétrico coletadas apenas em seu contorno externo quando corrente elétrica é imposta neste mesmo contorno. Uma das aplicações para esta tecnologia é o monitoramento das condições pulmonares de pacientes em Unidades de Tratamento Intensivo. Dentre vários algoritmos, destacam-se os filtros de Kalman que abordam o problema de estimação sob o ponto de vista probabilístico, procurando encontrar a distribuição de probabilidade do estado condicionada à realização das medidas. Para que estes filtros possam ser utilizados, um modelo de evolução temporal do sistema sendo observado deve ser adotado. Esta tese propõe o uso de um modelo de evolução para a variação de volume de ar nos pulmões durante a respiração de um paciente sob ventilação artificial. Este modelo é utilizado no unscented Kalman filter, uma extensão não linear do filtro de Kalman. Tal modelo é ajustado em paralelo à estimação do estado, utilizando um esquema dual de estimação. Um algoritmo de segmentação de imagem é proposto para identificar as regiões pulmonares nas imagens estimadas e assim utilizar o modelo de evolução. Com o intuito de melhorar as estimativas, o método do erro de aproximação é utilizado no modelo de observação para mitigar os erros de modelagem e informação a priori é adicionada na solução do problema inverso mal-posto. O método é avaliado através de simulações numéricas e ensaio experimental coletado em um voluntário. Os resultados mostram que o método proposto melhora as estimativas feitas pelo filtro de Kalman, propiciando a visualização de imagens absolutas, dinâmicas e com bom nível de contraste entre os tecidos e órgãos internos.
id USP_819c8844d8da9b8823392be8f4fe94ae
oai_identifier_str oai:teses.usp.br:tde-01082013-154423
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.Nonlinear state estimation using the Unscented Kalman filter in electrical impedance tomography.Electrical impedance tomographyEstimação não linear de estadoEvolution modelInformação a prioriModelo de evoluçãoNonlinear state estimationPrior informationTomografia por impedância elétricaUnscented Kalman filterUnscented Kalman filterA Tomografia por Impedância Elétrica tem como objetivo estimar a distribuição de impedância elétrica dentro de uma região a partir de medidas de potencial elétrico coletadas apenas em seu contorno externo quando corrente elétrica é imposta neste mesmo contorno. Uma das aplicações para esta tecnologia é o monitoramento das condições pulmonares de pacientes em Unidades de Tratamento Intensivo. Dentre vários algoritmos, destacam-se os filtros de Kalman que abordam o problema de estimação sob o ponto de vista probabilístico, procurando encontrar a distribuição de probabilidade do estado condicionada à realização das medidas. Para que estes filtros possam ser utilizados, um modelo de evolução temporal do sistema sendo observado deve ser adotado. Esta tese propõe o uso de um modelo de evolução para a variação de volume de ar nos pulmões durante a respiração de um paciente sob ventilação artificial. Este modelo é utilizado no unscented Kalman filter, uma extensão não linear do filtro de Kalman. Tal modelo é ajustado em paralelo à estimação do estado, utilizando um esquema dual de estimação. Um algoritmo de segmentação de imagem é proposto para identificar as regiões pulmonares nas imagens estimadas e assim utilizar o modelo de evolução. Com o intuito de melhorar as estimativas, o método do erro de aproximação é utilizado no modelo de observação para mitigar os erros de modelagem e informação a priori é adicionada na solução do problema inverso mal-posto. O método é avaliado através de simulações numéricas e ensaio experimental coletado em um voluntário. Os resultados mostram que o método proposto melhora as estimativas feitas pelo filtro de Kalman, propiciando a visualização de imagens absolutas, dinâmicas e com bom nível de contraste entre os tecidos e órgãos internos.Electrical impedance tomography estimates the electrical impedance distribution within a region given a set of electrical potential measurements acquired along its boundary at the same time that electrical currents are imposed on the same boundary. One of the applications of this technology is lung monitoring of patients in Intensive Care Units. One class of algorithms employed for the estimation are the Kalman filters which deal with the estimation problem in a probabilistic framework, looking for the probability density function of the state conditioned to the acquired measurements. In order to use such filters, an evolution models of the system must be employed. This thesis proposes an evolution model of the variation of air in the lungs of patients under artificial ventilation. This model is used on the Unscented Kalman Filter, a nonlinear extension of the Kalman filter. This model is adjusted in parallel to the state estimation, in a dual estimation scheme. An image segmentation algorithm is proposed for identifying the lungs in the images. In order to improve the estimate, the approximation error method is employed for mitigating the observation model errors and prior information is added for the solution of the ill-posed inverse problem. The method is evaluated with numerical simulations and with experimental data of a volunteer. The results show that the proposed method increases the quality of the estimates, allowing the visualization of absolute and dynamic images, with good level of contrast between the tissues and internal organs.Biblioteca Digitais de Teses e Dissertações da USPGonzález Lima, Raúl Kaipio, JariMoura, Fernando Silva de2013-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3152/tde-01082013-154423/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-01082013-154423Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
Nonlinear state estimation using the Unscented Kalman filter in electrical impedance tomography.
title Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
spellingShingle Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
Moura, Fernando Silva de
Electrical impedance tomography
Estimação não linear de estado
Evolution model
Informação a priori
Modelo de evolução
Nonlinear state estimation
Prior information
Tomografia por impedância elétrica
Unscented Kalman filter
Unscented Kalman filter
title_short Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
title_full Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
title_fullStr Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
title_full_unstemmed Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
title_sort Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica.
author Moura, Fernando Silva de
author_facet Moura, Fernando Silva de
author_role author
dc.contributor.none.fl_str_mv González Lima, Raúl
Kaipio, Jari
dc.contributor.author.fl_str_mv Moura, Fernando Silva de
dc.subject.por.fl_str_mv Electrical impedance tomography
Estimação não linear de estado
Evolution model
Informação a priori
Modelo de evolução
Nonlinear state estimation
Prior information
Tomografia por impedância elétrica
Unscented Kalman filter
Unscented Kalman filter
topic Electrical impedance tomography
Estimação não linear de estado
Evolution model
Informação a priori
Modelo de evolução
Nonlinear state estimation
Prior information
Tomografia por impedância elétrica
Unscented Kalman filter
Unscented Kalman filter
description A Tomografia por Impedância Elétrica tem como objetivo estimar a distribuição de impedância elétrica dentro de uma região a partir de medidas de potencial elétrico coletadas apenas em seu contorno externo quando corrente elétrica é imposta neste mesmo contorno. Uma das aplicações para esta tecnologia é o monitoramento das condições pulmonares de pacientes em Unidades de Tratamento Intensivo. Dentre vários algoritmos, destacam-se os filtros de Kalman que abordam o problema de estimação sob o ponto de vista probabilístico, procurando encontrar a distribuição de probabilidade do estado condicionada à realização das medidas. Para que estes filtros possam ser utilizados, um modelo de evolução temporal do sistema sendo observado deve ser adotado. Esta tese propõe o uso de um modelo de evolução para a variação de volume de ar nos pulmões durante a respiração de um paciente sob ventilação artificial. Este modelo é utilizado no unscented Kalman filter, uma extensão não linear do filtro de Kalman. Tal modelo é ajustado em paralelo à estimação do estado, utilizando um esquema dual de estimação. Um algoritmo de segmentação de imagem é proposto para identificar as regiões pulmonares nas imagens estimadas e assim utilizar o modelo de evolução. Com o intuito de melhorar as estimativas, o método do erro de aproximação é utilizado no modelo de observação para mitigar os erros de modelagem e informação a priori é adicionada na solução do problema inverso mal-posto. O método é avaliado através de simulações numéricas e ensaio experimental coletado em um voluntário. Os resultados mostram que o método proposto melhora as estimativas feitas pelo filtro de Kalman, propiciando a visualização de imagens absolutas, dinâmicas e com bom nível de contraste entre os tecidos e órgãos internos.
publishDate 2013
dc.date.none.fl_str_mv 2013-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3152/tde-01082013-154423/
url http://www.teses.usp.br/teses/disponiveis/3/3152/tde-01082013-154423/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256582915620864