Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model

Detalhes bibliográficos
Autor(a) principal: Nascimento, Caren Augustinho do
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/25/25149/tde-17112021-115844/
Resumo: This study compared the effect of a commercial and pure sweetener containing Stevia to that of aspartame (commercial and pure), sucrose (common sugar), xylitol (a natural sweetener known to be anti-cariogenic) on the development of dental caries in a microcosm biofilm model formed over enamel and dentin. For this, 228 bovine enamel and 228 samples of bovine root dentin samples (4 mm x 4 mm) were prepared. In 24-well plates, each enamel or dentin sample was exposed to 1.5 mL of inoculum (human saliva-glycerol + McBain saliva, 1:50), for 8 h. After the initial 8 h, the inoculum was removed, the samples were washed with PBS (5 s), received 1.5 mL of fresh medium (McBain artificial saliva) for 16 h, completing the initial 24 h. From the 2nd to the 5th day of biofilm cultivation, the samples were exposed daily to McBain saliva supplemented with 0.2% of the respective sweeteners /sugar: Stevia, aspartame (both in pure or commercial form, Finn brand), xylitol, sucrose and control saliva (McBain) without supplementation (n = 3/plate, biological quadruplicate). The cultivation was carried out at 5% CO2 and 37ºC. The production of lactic acid (g/L) and colony-forming units (CFU) for total microorganisms, total lactobacilli, total streptococci and Streptococcus mutans/ S. sobrinus (log10 CFU/mL) were quantified in the biofilm. The degree of dental demineralization was analyzed using transverse microradiography-TMR. The data were compared statistically (Kruskal-Wallis / Dunn, p < 0.05). In the lactate analysis, the sweeteners pure stevia, pure aspartame, xylitol and control did not differ, reducing by 92% the production of this acid. The groups stevia finn, aspartame finn and sucrose showed higher production of lactic acid, being similar to each other (0.47 ± 0.14, 0.43 ± 0.10, 0.44 ± 0.13 g/L for enamel; 0.69 ± 0.19, 0.65 ± 0.11, 0.67 ± 0.24 g/L for dentin, respectively, p < 0.0001). Regarding the CFU counting for total lactobacilli and S. mutans/S. sobrinus, xylitol and control groups did not show colony growth on enamel. The species grew under exposure to stevia finn, aspartame finn and sucrose in enamel and dentin (5.69 ± 0.44, 5.69 ± 0.82, 5.75 ± 0.60 log10 CFU total lactobacilli/mL; 7.57 ± 0.37, 7.61 ± 0.64, 7.49 ± 0.41 log10 CFU S. mutans /mL; 0.00 ± 3.98, 5.30 ± 5.30, 5.30 ± 0.15 log10 CFU total lactobacilli/mL; 7.83 ± 0.36, 7.87 ± 0.18; 7.78 ± 0.31 log10 CFU S. mutans/mL for enamel and dentin, respectively). Enamel and dentin demineralization was significantly reduced for the xylitol, control, pure stevia and pure aspartame groups (approximately 85% and 83% reduction, respectively) compared to stevia finn, aspartame finn and sucrose which, in turn, did not differ from each other (Z: 3084.67 ± 834.26, 3174.67 ± 603.10, 2913.67 ± 646.69 vol%.m for enamel and 3945.67 ± 689.69, 3626.79 ± 617.26, 3543.33 ± 432.50 vol%.m for dentin). In conclusion, commercial sweeteners based on stevia and aspartame (Finn brand) proved to be as cariogenic as sucrose in this experimental model, which is due to the other components of these sweeteners, since the pure forms were not cariogenic.
id USP_81f9b2e43776df88a4b912c387519eb0
oai_identifier_str oai:teses.usp.br:tde-17112021-115844
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm modelEfeito de adoçante contendo Stevia no desenvolvimento da cárie dentária em esmalte e dentina sob um modelo de biofilme de microcosmoAçúcarAdoçanteBiofilme dentárioCárie dentáriaDental biofilmDental cavityDentinDentinaEnamelEsmalteSugarSweetenerThis study compared the effect of a commercial and pure sweetener containing Stevia to that of aspartame (commercial and pure), sucrose (common sugar), xylitol (a natural sweetener known to be anti-cariogenic) on the development of dental caries in a microcosm biofilm model formed over enamel and dentin. For this, 228 bovine enamel and 228 samples of bovine root dentin samples (4 mm x 4 mm) were prepared. In 24-well plates, each enamel or dentin sample was exposed to 1.5 mL of inoculum (human saliva-glycerol + McBain saliva, 1:50), for 8 h. After the initial 8 h, the inoculum was removed, the samples were washed with PBS (5 s), received 1.5 mL of fresh medium (McBain artificial saliva) for 16 h, completing the initial 24 h. From the 2nd to the 5th day of biofilm cultivation, the samples were exposed daily to McBain saliva supplemented with 0.2% of the respective sweeteners /sugar: Stevia, aspartame (both in pure or commercial form, Finn brand), xylitol, sucrose and control saliva (McBain) without supplementation (n = 3/plate, biological quadruplicate). The cultivation was carried out at 5% CO2 and 37ºC. The production of lactic acid (g/L) and colony-forming units (CFU) for total microorganisms, total lactobacilli, total streptococci and Streptococcus mutans/ S. sobrinus (log10 CFU/mL) were quantified in the biofilm. The degree of dental demineralization was analyzed using transverse microradiography-TMR. The data were compared statistically (Kruskal-Wallis / Dunn, p < 0.05). In the lactate analysis, the sweeteners pure stevia, pure aspartame, xylitol and control did not differ, reducing by 92% the production of this acid. The groups stevia finn, aspartame finn and sucrose showed higher production of lactic acid, being similar to each other (0.47 ± 0.14, 0.43 ± 0.10, 0.44 ± 0.13 g/L for enamel; 0.69 ± 0.19, 0.65 ± 0.11, 0.67 ± 0.24 g/L for dentin, respectively, p < 0.0001). Regarding the CFU counting for total lactobacilli and S. mutans/S. sobrinus, xylitol and control groups did not show colony growth on enamel. The species grew under exposure to stevia finn, aspartame finn and sucrose in enamel and dentin (5.69 ± 0.44, 5.69 ± 0.82, 5.75 ± 0.60 log10 CFU total lactobacilli/mL; 7.57 ± 0.37, 7.61 ± 0.64, 7.49 ± 0.41 log10 CFU S. mutans /mL; 0.00 ± 3.98, 5.30 ± 5.30, 5.30 ± 0.15 log10 CFU total lactobacilli/mL; 7.83 ± 0.36, 7.87 ± 0.18; 7.78 ± 0.31 log10 CFU S. mutans/mL for enamel and dentin, respectively). Enamel and dentin demineralization was significantly reduced for the xylitol, control, pure stevia and pure aspartame groups (approximately 85% and 83% reduction, respectively) compared to stevia finn, aspartame finn and sucrose which, in turn, did not differ from each other (Z: 3084.67 ± 834.26, 3174.67 ± 603.10, 2913.67 ± 646.69 vol%.m for enamel and 3945.67 ± 689.69, 3626.79 ± 617.26, 3543.33 ± 432.50 vol%.m for dentin). In conclusion, commercial sweeteners based on stevia and aspartame (Finn brand) proved to be as cariogenic as sucrose in this experimental model, which is due to the other components of these sweeteners, since the pure forms were not cariogenic.Este estudo comparou o efeito de um adoçante comercial e puro contendo Stevia ao do aspartame (comercial e puro), sacarose (açúcar comum), xilitol (adoçante natural conhecido por ser anti-cariogênico) no desenvolvimento de cárie dentária em um modelo de biofilme microcosmo formado sobre o esmalte e a dentina. Para isso, foram preparadas 228 amostras de esmalte bovino e 228 amostras de dentina radicular bovina (4 mm x 4 mm). Em placas de 24 poços, cada amostra de esmalte ou dentina foi exposta a 1,5 mL de inóculo (saliva-glicerol humana + saliva de McBain, 1:50), por 8 h. Após as 8 h iniciais, o inóculo foi retirado, as amostras foram lavadas com PBS (5 s), receberam 1,5 mL de meio fresco (saliva artificial McBain) por 16 h, completando as 24 h iniciais. Do 2º ao 5º dia de cultivo do biofilme, as amostras foram expostas diariamente à saliva de McBain suplementada com 0,2% dos respectivos adoçantes/açúcar: Stevia, aspartame (ambos na forma pura ou comercial, marca Finn), xilitol, sacarose e saliva (McBain) controle sem suplementação (n=3/placa, quadriplicada biológica). O cultivo foi realizado a 5% CO2 e 37ºC. A produção de ácido lático (g/L) e as unidades formadoras de colônia (UFC) para microrganismos totais, lactobacilos totais, estreptococos totais e Streptococcus mutans/ S. sobrinus (log10 UFC/mL) foram quantificadas no biofilme. O grau de desmineralização dentária foi analisado por meio da microrradiografia transversal-TMR. Os dados foram comparados estatisticamente (Kruskal-Wallis/Dunn, p<0,05). Na análise do lactato, os adoçantes stevia pura, aspartame puro, xilitol e controle não diferiram entre si, reduzindo em 92% a produção deste ácido. Os grupos stevia finn, aspartame finn e sacarose apresentaram maior produção de ácido lático, sendo similares entre si (0,47 ± 0,14, 0,43 ± 0,10, 0,44 ± 0,13 g/L para o esmalte; 0,69 ± 0,19, 0,65 ± 0,11, 0,67 ± 0,24 g/L para a dentina, respectivamente, p<0,0001). Em relação à contagem de UFCs para lactobacilos totais e S. mutans/ S. sobrinus, os grupos xilitol e controle não apresentaram crescimento de colônias sobre o esmalte. As espécies cresceram sob exposição a stevia finn, aspartame finn e sacarose no esmalte e dentina (5,69 ± 0,44, 5,69 ± 0,82, 5,75 ± 0,60 log10 UFC lactobacilos totais /mL de; 7,57 ± 0,37, 7,61 ± 0,64, 7,49 ± 0,41 log10 UFC S. mutans/mL para esmalte; 0,00 ± 3,98, 5,30 ± 5,30, 5,30 ± 0,15 log10 UFC lactobacilos totais/mL; 7,83 ± 0,36, 7,87 ± 0,18; 7,78 ± 0,31 log10 UFC S. mutans /mL para a dentina, respectivamente). A desmineralização do esmalte e da dentina foi significativamente reduzida para os grupos xilitol, controle, stevia pura e aspartame puro (aproximadamente 85% e 83% de redução, respectivamente) em comparação com stevia finn, aspartame finn e sacarose que, por sua vez, não diferiram entre si (Z: 3084,7 ± 834,3, 3174,7 ± 603,1, 2913,7 ± 646,7 vol%.m para o esmalte e 3945,7 ± 689,7, 3626,8 ± 617,3, 3543,3 ± 432,5 vol%.m para a dentina, respectivamente). Em conclusão, adoçantes comerciais à base de stevia e aspartame (marca Finn) mostraram-se tão cariogênicos quanto à sacarose neste modelo experimental, o que se deve aos outros componentes destes adoçantes, uma vez que as formas puras não foram cariogênicas.Biblioteca Digitais de Teses e Dissertações da USPMagalhães, Ana CarolinaNascimento, Caren Augustinho do2021-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/25/25149/tde-17112021-115844/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-02T12:52:02Zoai:teses.usp.br:tde-17112021-115844Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-02T12:52:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
Efeito de adoçante contendo Stevia no desenvolvimento da cárie dentária em esmalte e dentina sob um modelo de biofilme de microcosmo
title Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
spellingShingle Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
Nascimento, Caren Augustinho do
Açúcar
Adoçante
Biofilme dentário
Cárie dentária
Dental biofilm
Dental cavity
Dentin
Dentina
Enamel
Esmalte
Sugar
Sweetener
title_short Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
title_full Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
title_fullStr Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
title_full_unstemmed Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
title_sort Effect of sweetener containing Stevia on the development of dental caries in enamel and dentin under a microcosm biofilm model
author Nascimento, Caren Augustinho do
author_facet Nascimento, Caren Augustinho do
author_role author
dc.contributor.none.fl_str_mv Magalhães, Ana Carolina
dc.contributor.author.fl_str_mv Nascimento, Caren Augustinho do
dc.subject.por.fl_str_mv Açúcar
Adoçante
Biofilme dentário
Cárie dentária
Dental biofilm
Dental cavity
Dentin
Dentina
Enamel
Esmalte
Sugar
Sweetener
topic Açúcar
Adoçante
Biofilme dentário
Cárie dentária
Dental biofilm
Dental cavity
Dentin
Dentina
Enamel
Esmalte
Sugar
Sweetener
description This study compared the effect of a commercial and pure sweetener containing Stevia to that of aspartame (commercial and pure), sucrose (common sugar), xylitol (a natural sweetener known to be anti-cariogenic) on the development of dental caries in a microcosm biofilm model formed over enamel and dentin. For this, 228 bovine enamel and 228 samples of bovine root dentin samples (4 mm x 4 mm) were prepared. In 24-well plates, each enamel or dentin sample was exposed to 1.5 mL of inoculum (human saliva-glycerol + McBain saliva, 1:50), for 8 h. After the initial 8 h, the inoculum was removed, the samples were washed with PBS (5 s), received 1.5 mL of fresh medium (McBain artificial saliva) for 16 h, completing the initial 24 h. From the 2nd to the 5th day of biofilm cultivation, the samples were exposed daily to McBain saliva supplemented with 0.2% of the respective sweeteners /sugar: Stevia, aspartame (both in pure or commercial form, Finn brand), xylitol, sucrose and control saliva (McBain) without supplementation (n = 3/plate, biological quadruplicate). The cultivation was carried out at 5% CO2 and 37ºC. The production of lactic acid (g/L) and colony-forming units (CFU) for total microorganisms, total lactobacilli, total streptococci and Streptococcus mutans/ S. sobrinus (log10 CFU/mL) were quantified in the biofilm. The degree of dental demineralization was analyzed using transverse microradiography-TMR. The data were compared statistically (Kruskal-Wallis / Dunn, p < 0.05). In the lactate analysis, the sweeteners pure stevia, pure aspartame, xylitol and control did not differ, reducing by 92% the production of this acid. The groups stevia finn, aspartame finn and sucrose showed higher production of lactic acid, being similar to each other (0.47 ± 0.14, 0.43 ± 0.10, 0.44 ± 0.13 g/L for enamel; 0.69 ± 0.19, 0.65 ± 0.11, 0.67 ± 0.24 g/L for dentin, respectively, p < 0.0001). Regarding the CFU counting for total lactobacilli and S. mutans/S. sobrinus, xylitol and control groups did not show colony growth on enamel. The species grew under exposure to stevia finn, aspartame finn and sucrose in enamel and dentin (5.69 ± 0.44, 5.69 ± 0.82, 5.75 ± 0.60 log10 CFU total lactobacilli/mL; 7.57 ± 0.37, 7.61 ± 0.64, 7.49 ± 0.41 log10 CFU S. mutans /mL; 0.00 ± 3.98, 5.30 ± 5.30, 5.30 ± 0.15 log10 CFU total lactobacilli/mL; 7.83 ± 0.36, 7.87 ± 0.18; 7.78 ± 0.31 log10 CFU S. mutans/mL for enamel and dentin, respectively). Enamel and dentin demineralization was significantly reduced for the xylitol, control, pure stevia and pure aspartame groups (approximately 85% and 83% reduction, respectively) compared to stevia finn, aspartame finn and sucrose which, in turn, did not differ from each other (Z: 3084.67 ± 834.26, 3174.67 ± 603.10, 2913.67 ± 646.69 vol%.m for enamel and 3945.67 ± 689.69, 3626.79 ± 617.26, 3543.33 ± 432.50 vol%.m for dentin). In conclusion, commercial sweeteners based on stevia and aspartame (Finn brand) proved to be as cariogenic as sucrose in this experimental model, which is due to the other components of these sweeteners, since the pure forms were not cariogenic.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/25/25149/tde-17112021-115844/
url https://www.teses.usp.br/teses/disponiveis/25/25149/tde-17112021-115844/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257054343856128