Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.

Detalhes bibliográficos
Autor(a) principal: Camargo, Luiz Armando Steinle
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3143/tde-14072016-135435/
Resumo: A comercialização de energia elétrica de fontes renováveis, ordinariamente, constitui-se uma atividade em que as operações são estruturadas sob condições de incerteza, por exemplo, em relação ao preço \"spot\" no mercado de curto prazo e a geração de energia dos empreendimentos. Deriva desse fato a busca dos agentes pela formulação de estratégias e utilização de ferramentais para auxiliá-los em suas tomadas de decisão, visando não somente o retorno financeiro, mas também à mitigação dos riscos envolvidos. Análises de investimentos em fontes renováveis compartilham de desafios similares. Na literatura, o estudo da tomada de decisão considerada ótima sob condições de incerteza se dá por meio da aplicação de técnicas de programação estocástica, que viabiliza a modelagem de problemas com variáveis randômicas e a obtenção de soluções racionais, de interesse para o investidor. Esses modelos permitem a incorporação de métricas de risco, como por exemplo, o Conditional Value-at-Risk, a fim de se obter soluções ótimas que ponderem a expectativa de resultado financeiro e o risco associado da operação, onde a aversão ao risco do agente torna-se um condicionante fundamental. O objetivo principal da Tese - sob a ótica dos agentes geradores, consumidores e comercializadores - é: (i) desenvolver e implementar modelos de otimização em programação linear estocástica com métrica CVaR associada, customizados para cada um desses agentes; e (ii) aplicá-los na análise estratégica de operações como forma de apresentar alternativas factíveis à gestão das atividades desses agentes e contribuir com a proposição de um instrumento conceitualmente robusto e amigável ao usuário, para utilização por parte das empresas. Nesse contexto, como antes frisado, dá-se ênfase na análise do risco financeiro dessas operações por meio da aplicação do CVaR e com base na aversão ao risco do agente. Considera-se as fontes renováveis hídrica e eólica como opções de ativos de geração, de forma a estudar o efeito de complementaridade entre fontes distintas e entre sites distintos da mesma fonte, avaliando-se os rebatimentos nas operações.
id USP_84a2953a83bdd4a0510a1928060633cf
oai_identifier_str oai:teses.usp.br:tde-14072016-135435
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.Trading and investment strategies, with an emphasis on renewable energy, supported by specialized optimization models for stochastic assessment of risk and return.Análise de riscoCVaREnergias renováveisEstratégias de contrataçãoInvestimentoInvestmentOtimização estocásticaRenewable sourcesRisk analysisStochastic optimization modelsTrading strategiesA comercialização de energia elétrica de fontes renováveis, ordinariamente, constitui-se uma atividade em que as operações são estruturadas sob condições de incerteza, por exemplo, em relação ao preço \"spot\" no mercado de curto prazo e a geração de energia dos empreendimentos. Deriva desse fato a busca dos agentes pela formulação de estratégias e utilização de ferramentais para auxiliá-los em suas tomadas de decisão, visando não somente o retorno financeiro, mas também à mitigação dos riscos envolvidos. Análises de investimentos em fontes renováveis compartilham de desafios similares. Na literatura, o estudo da tomada de decisão considerada ótima sob condições de incerteza se dá por meio da aplicação de técnicas de programação estocástica, que viabiliza a modelagem de problemas com variáveis randômicas e a obtenção de soluções racionais, de interesse para o investidor. Esses modelos permitem a incorporação de métricas de risco, como por exemplo, o Conditional Value-at-Risk, a fim de se obter soluções ótimas que ponderem a expectativa de resultado financeiro e o risco associado da operação, onde a aversão ao risco do agente torna-se um condicionante fundamental. O objetivo principal da Tese - sob a ótica dos agentes geradores, consumidores e comercializadores - é: (i) desenvolver e implementar modelos de otimização em programação linear estocástica com métrica CVaR associada, customizados para cada um desses agentes; e (ii) aplicá-los na análise estratégica de operações como forma de apresentar alternativas factíveis à gestão das atividades desses agentes e contribuir com a proposição de um instrumento conceitualmente robusto e amigável ao usuário, para utilização por parte das empresas. Nesse contexto, como antes frisado, dá-se ênfase na análise do risco financeiro dessas operações por meio da aplicação do CVaR e com base na aversão ao risco do agente. Considera-se as fontes renováveis hídrica e eólica como opções de ativos de geração, de forma a estudar o efeito de complementaridade entre fontes distintas e entre sites distintos da mesma fonte, avaliando-se os rebatimentos nas operações.The renewable energy trading, ordinarily, is an activity in which mostly operations are structured under uncertainty conditions, for instance, in relation to the energy spot price and assets generation. Derives from this fact the search of the agents for strategies formulation based on computational tools to assist their decision-making process, not only seeking financial returns, but also to mitigate the risks involved. Investments analysis in renewable sources share the same challenges. In the literature, the study of optimal decision-making under uncertainty conditions is made through the application of stochastic programming techniques, which enable modeling problems with random variables and find rational solutions. These models allow the incorporation of risk metrics, as the \"Conditional Value-at-Risk (CVaR)\", to provide optimal solutions that weigh the expected financial results and the associated risk, in which the agent\'s risk-aversion becomes an essential condition for defining the operation strategy. From the perspective of generators, consumers and traders agents, the main purposes of this thesis are: (i) to develop customized optimization models with CVaR metric associated, optimized in stochastic linear programming; and (ii) to apply the models for strategic analysis of operations under the risk-return binomial, focusing on the management activities of each of these agents, and considering renewable sources as option. In this context, the emphasis is on analysis of the operations financial risks through the application of CVaR and based on the agent\'s risk-aversion level. Furthermore, the hydro and wind renewables sources are options of generation assets in order to study the seasonal generation complementarity effect among them and the consequences on energy trading strategies.Biblioteca Digitais de Teses e Dissertações da USPRamos, Dorel SoaresCamargo, Luiz Armando Steinle2015-10-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3143/tde-14072016-135435/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:03:48Zoai:teses.usp.br:tde-14072016-135435Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:48Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
Trading and investment strategies, with an emphasis on renewable energy, supported by specialized optimization models for stochastic assessment of risk and return.
title Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
spellingShingle Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
Camargo, Luiz Armando Steinle
Análise de risco
CVaR
Energias renováveis
Estratégias de contratação
Investimento
Investment
Otimização estocástica
Renewable sources
Risk analysis
Stochastic optimization models
Trading strategies
title_short Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
title_full Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
title_fullStr Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
title_full_unstemmed Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
title_sort Estratégias de comercialização e investimento, com ênfase em energias renováveis, suportadas por modelos de otimização especializados para avaliação estocástica de risco x retorno.
author Camargo, Luiz Armando Steinle
author_facet Camargo, Luiz Armando Steinle
author_role author
dc.contributor.none.fl_str_mv Ramos, Dorel Soares
dc.contributor.author.fl_str_mv Camargo, Luiz Armando Steinle
dc.subject.por.fl_str_mv Análise de risco
CVaR
Energias renováveis
Estratégias de contratação
Investimento
Investment
Otimização estocástica
Renewable sources
Risk analysis
Stochastic optimization models
Trading strategies
topic Análise de risco
CVaR
Energias renováveis
Estratégias de contratação
Investimento
Investment
Otimização estocástica
Renewable sources
Risk analysis
Stochastic optimization models
Trading strategies
description A comercialização de energia elétrica de fontes renováveis, ordinariamente, constitui-se uma atividade em que as operações são estruturadas sob condições de incerteza, por exemplo, em relação ao preço \"spot\" no mercado de curto prazo e a geração de energia dos empreendimentos. Deriva desse fato a busca dos agentes pela formulação de estratégias e utilização de ferramentais para auxiliá-los em suas tomadas de decisão, visando não somente o retorno financeiro, mas também à mitigação dos riscos envolvidos. Análises de investimentos em fontes renováveis compartilham de desafios similares. Na literatura, o estudo da tomada de decisão considerada ótima sob condições de incerteza se dá por meio da aplicação de técnicas de programação estocástica, que viabiliza a modelagem de problemas com variáveis randômicas e a obtenção de soluções racionais, de interesse para o investidor. Esses modelos permitem a incorporação de métricas de risco, como por exemplo, o Conditional Value-at-Risk, a fim de se obter soluções ótimas que ponderem a expectativa de resultado financeiro e o risco associado da operação, onde a aversão ao risco do agente torna-se um condicionante fundamental. O objetivo principal da Tese - sob a ótica dos agentes geradores, consumidores e comercializadores - é: (i) desenvolver e implementar modelos de otimização em programação linear estocástica com métrica CVaR associada, customizados para cada um desses agentes; e (ii) aplicá-los na análise estratégica de operações como forma de apresentar alternativas factíveis à gestão das atividades desses agentes e contribuir com a proposição de um instrumento conceitualmente robusto e amigável ao usuário, para utilização por parte das empresas. Nesse contexto, como antes frisado, dá-se ênfase na análise do risco financeiro dessas operações por meio da aplicação do CVaR e com base na aversão ao risco do agente. Considera-se as fontes renováveis hídrica e eólica como opções de ativos de geração, de forma a estudar o efeito de complementaridade entre fontes distintas e entre sites distintos da mesma fonte, avaliando-se os rebatimentos nas operações.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3143/tde-14072016-135435/
url http://www.teses.usp.br/teses/disponiveis/3/3143/tde-14072016-135435/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256967813267456