Energy-efficient virtual network function placement based on metaheuristic approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/ |
Resumo: | Concerns about reducing energy consumption in the sector of Information and Communication Technology has increasingly motivated the transition of traditional services to the clouds. In this context, Network Functions Virtualization (NFV) emerges as a solution to migrate various network functions, from dedicated hardware devices to a virtual environment based on commodity hardware. With this virtualization, in addition to the promise of increasing energy efficiency, it is expected to reduce the financial cost and increase the flexibility and scalability of the networks. In this research, it is proposed the development of algorithms based on three metaheuristics (Standard Hill-Climbing, Simulated Annealing, and Memetic Algorithm) to schedule network functions in cloud data centers, observing not only the capacities and energy consumption of the computers where the functions will be executed but also of the network and switches that connect these computers. Comparing the algorithms proposed in relation to the Best Fit algorithm found in the literature, the one based on Simulated Annealing saved 55.44% of energy consumption in a datacenter with Three-tier topology and the one based on memetic algorithm saved 49.18% of energy consumption in a data center with Fat-Tree topology. To allow the reproduction of all the experiments carried out in this research, the codes developed are publicly available as free software |
id |
USP_8589f7ba91ec44e294a14df751e4e53c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-13082020-200722 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Energy-efficient virtual network function placement based on metaheuristic approachesPosicionamento de funções virtuais de rede com eficiência energética utilizando abordagens metaheurísticasCloud computingComputação em nuvemEficiência energéticaEncadeamento de funções de serviçoEnergy efficiencyNetwork functions virtualizationService function chainingVirtualização de funções de redeConcerns about reducing energy consumption in the sector of Information and Communication Technology has increasingly motivated the transition of traditional services to the clouds. In this context, Network Functions Virtualization (NFV) emerges as a solution to migrate various network functions, from dedicated hardware devices to a virtual environment based on commodity hardware. With this virtualization, in addition to the promise of increasing energy efficiency, it is expected to reduce the financial cost and increase the flexibility and scalability of the networks. In this research, it is proposed the development of algorithms based on three metaheuristics (Standard Hill-Climbing, Simulated Annealing, and Memetic Algorithm) to schedule network functions in cloud data centers, observing not only the capacities and energy consumption of the computers where the functions will be executed but also of the network and switches that connect these computers. Comparing the algorithms proposed in relation to the Best Fit algorithm found in the literature, the one based on Simulated Annealing saved 55.44% of energy consumption in a datacenter with Three-tier topology and the one based on memetic algorithm saved 49.18% of energy consumption in a data center with Fat-Tree topology. To allow the reproduction of all the experiments carried out in this research, the codes developed are publicly available as free softwareA preocupação em reduzir o consumo de energia elétrica no setor de tecnologias da informação e comunicação tem motivado cada vez mais a transição de serviços tradicionais dessa área para as nuvens. Nesse contexto, a virtualização de funções de rede (NFV Network Functions Virtual- ization) surge como uma solução para migrar várias funções de rede, de dispositivos de hardware dedicados, para um ambiente virtual baseado em máquinas de propósito geral. Com essa virtual- ização, além da promessa de aumento da eficiência energética, espera-se reduzir o custo financeiro e aumentar a flexibilidade e a escalabilidade das redes. Nesta pesquisa, é proposto o desenvolvimento de algoritmos baseados em três metaheurísticas (Hill-Climbing, Simulated Annealing e Algoritmo Memético) para escalonar funções de rede em data centers de nuvens, observando não apenas a capacidade e consumo de energia dos computadores onde as funções serão executadas mas também da rede e dos switches que interligam esses computadores. Comparando os algoritmos propostos em relação ao algoritmo Best Fit encontrado na literatura, o baseado em Simulated Annealing econo- mizou 55,44% do consumo de energia em um datacenter com topologia Three-tier e o baseado em algoritmo memético economizou 49,18% do consumo de energia em um datacenter com topologia Fat-Tree. Para permitir a fácil reprodução de todos os experimentos realizados nessa pesquisa, os códigos desenvolvidos estão disponibilizados publicamente como software livreBiblioteca Digitais de Teses e Dissertações da USPBatista, Daniel MacedoMosaiyebzadeh, Fatemeh2020-07-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-09-18T01:36:02Zoai:teses.usp.br:tde-13082020-200722Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-09-18T01:36:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Energy-efficient virtual network function placement based on metaheuristic approaches Posicionamento de funções virtuais de rede com eficiência energética utilizando abordagens metaheurísticas |
title |
Energy-efficient virtual network function placement based on metaheuristic approaches |
spellingShingle |
Energy-efficient virtual network function placement based on metaheuristic approaches Mosaiyebzadeh, Fatemeh Cloud computing Computação em nuvem Eficiência energética Encadeamento de funções de serviço Energy efficiency Network functions virtualization Service function chaining Virtualização de funções de rede |
title_short |
Energy-efficient virtual network function placement based on metaheuristic approaches |
title_full |
Energy-efficient virtual network function placement based on metaheuristic approaches |
title_fullStr |
Energy-efficient virtual network function placement based on metaheuristic approaches |
title_full_unstemmed |
Energy-efficient virtual network function placement based on metaheuristic approaches |
title_sort |
Energy-efficient virtual network function placement based on metaheuristic approaches |
author |
Mosaiyebzadeh, Fatemeh |
author_facet |
Mosaiyebzadeh, Fatemeh |
author_role |
author |
dc.contributor.none.fl_str_mv |
Batista, Daniel Macedo |
dc.contributor.author.fl_str_mv |
Mosaiyebzadeh, Fatemeh |
dc.subject.por.fl_str_mv |
Cloud computing Computação em nuvem Eficiência energética Encadeamento de funções de serviço Energy efficiency Network functions virtualization Service function chaining Virtualização de funções de rede |
topic |
Cloud computing Computação em nuvem Eficiência energética Encadeamento de funções de serviço Energy efficiency Network functions virtualization Service function chaining Virtualização de funções de rede |
description |
Concerns about reducing energy consumption in the sector of Information and Communication Technology has increasingly motivated the transition of traditional services to the clouds. In this context, Network Functions Virtualization (NFV) emerges as a solution to migrate various network functions, from dedicated hardware devices to a virtual environment based on commodity hardware. With this virtualization, in addition to the promise of increasing energy efficiency, it is expected to reduce the financial cost and increase the flexibility and scalability of the networks. In this research, it is proposed the development of algorithms based on three metaheuristics (Standard Hill-Climbing, Simulated Annealing, and Memetic Algorithm) to schedule network functions in cloud data centers, observing not only the capacities and energy consumption of the computers where the functions will be executed but also of the network and switches that connect these computers. Comparing the algorithms proposed in relation to the Best Fit algorithm found in the literature, the one based on Simulated Annealing saved 55.44% of energy consumption in a datacenter with Three-tier topology and the one based on memetic algorithm saved 49.18% of energy consumption in a data center with Fat-Tree topology. To allow the reproduction of all the experiments carried out in this research, the codes developed are publicly available as free software |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256941961674752 |