Energy-efficient virtual network function placement based on metaheuristic approaches

Detalhes bibliográficos
Autor(a) principal: Mosaiyebzadeh, Fatemeh
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/
Resumo: Concerns about reducing energy consumption in the sector of Information and Communication Technology has increasingly motivated the transition of traditional services to the clouds. In this context, Network Functions Virtualization (NFV) emerges as a solution to migrate various network functions, from dedicated hardware devices to a virtual environment based on commodity hardware. With this virtualization, in addition to the promise of increasing energy efficiency, it is expected to reduce the financial cost and increase the flexibility and scalability of the networks. In this research, it is proposed the development of algorithms based on three metaheuristics (Standard Hill-Climbing, Simulated Annealing, and Memetic Algorithm) to schedule network functions in cloud data centers, observing not only the capacities and energy consumption of the computers where the functions will be executed but also of the network and switches that connect these computers. Comparing the algorithms proposed in relation to the Best Fit algorithm found in the literature, the one based on Simulated Annealing saved 55.44% of energy consumption in a datacenter with Three-tier topology and the one based on memetic algorithm saved 49.18% of energy consumption in a data center with Fat-Tree topology. To allow the reproduction of all the experiments carried out in this research, the codes developed are publicly available as free software
id USP_8589f7ba91ec44e294a14df751e4e53c
oai_identifier_str oai:teses.usp.br:tde-13082020-200722
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Energy-efficient virtual network function placement based on metaheuristic approachesPosicionamento de funções virtuais de rede com eficiência energética utilizando abordagens metaheurísticasCloud computingComputação em nuvemEficiência energéticaEncadeamento de funções de serviçoEnergy efficiencyNetwork functions virtualizationService function chainingVirtualização de funções de redeConcerns about reducing energy consumption in the sector of Information and Communication Technology has increasingly motivated the transition of traditional services to the clouds. In this context, Network Functions Virtualization (NFV) emerges as a solution to migrate various network functions, from dedicated hardware devices to a virtual environment based on commodity hardware. With this virtualization, in addition to the promise of increasing energy efficiency, it is expected to reduce the financial cost and increase the flexibility and scalability of the networks. In this research, it is proposed the development of algorithms based on three metaheuristics (Standard Hill-Climbing, Simulated Annealing, and Memetic Algorithm) to schedule network functions in cloud data centers, observing not only the capacities and energy consumption of the computers where the functions will be executed but also of the network and switches that connect these computers. Comparing the algorithms proposed in relation to the Best Fit algorithm found in the literature, the one based on Simulated Annealing saved 55.44% of energy consumption in a datacenter with Three-tier topology and the one based on memetic algorithm saved 49.18% of energy consumption in a data center with Fat-Tree topology. To allow the reproduction of all the experiments carried out in this research, the codes developed are publicly available as free softwareA preocupação em reduzir o consumo de energia elétrica no setor de tecnologias da informação e comunicação tem motivado cada vez mais a transição de serviços tradicionais dessa área para as nuvens. Nesse contexto, a virtualização de funções de rede (NFV Network Functions Virtual- ization) surge como uma solução para migrar várias funções de rede, de dispositivos de hardware dedicados, para um ambiente virtual baseado em máquinas de propósito geral. Com essa virtual- ização, além da promessa de aumento da eficiência energética, espera-se reduzir o custo financeiro e aumentar a flexibilidade e a escalabilidade das redes. Nesta pesquisa, é proposto o desenvolvimento de algoritmos baseados em três metaheurísticas (Hill-Climbing, Simulated Annealing e Algoritmo Memético) para escalonar funções de rede em data centers de nuvens, observando não apenas a capacidade e consumo de energia dos computadores onde as funções serão executadas mas também da rede e dos switches que interligam esses computadores. Comparando os algoritmos propostos em relação ao algoritmo Best Fit encontrado na literatura, o baseado em Simulated Annealing econo- mizou 55,44% do consumo de energia em um datacenter com topologia Three-tier e o baseado em algoritmo memético economizou 49,18% do consumo de energia em um datacenter com topologia Fat-Tree. Para permitir a fácil reprodução de todos os experimentos realizados nessa pesquisa, os códigos desenvolvidos estão disponibilizados publicamente como software livreBiblioteca Digitais de Teses e Dissertações da USPBatista, Daniel MacedoMosaiyebzadeh, Fatemeh2020-07-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-09-18T01:36:02Zoai:teses.usp.br:tde-13082020-200722Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-09-18T01:36:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Energy-efficient virtual network function placement based on metaheuristic approaches
Posicionamento de funções virtuais de rede com eficiência energética utilizando abordagens metaheurísticas
title Energy-efficient virtual network function placement based on metaheuristic approaches
spellingShingle Energy-efficient virtual network function placement based on metaheuristic approaches
Mosaiyebzadeh, Fatemeh
Cloud computing
Computação em nuvem
Eficiência energética
Encadeamento de funções de serviço
Energy efficiency
Network functions virtualization
Service function chaining
Virtualização de funções de rede
title_short Energy-efficient virtual network function placement based on metaheuristic approaches
title_full Energy-efficient virtual network function placement based on metaheuristic approaches
title_fullStr Energy-efficient virtual network function placement based on metaheuristic approaches
title_full_unstemmed Energy-efficient virtual network function placement based on metaheuristic approaches
title_sort Energy-efficient virtual network function placement based on metaheuristic approaches
author Mosaiyebzadeh, Fatemeh
author_facet Mosaiyebzadeh, Fatemeh
author_role author
dc.contributor.none.fl_str_mv Batista, Daniel Macedo
dc.contributor.author.fl_str_mv Mosaiyebzadeh, Fatemeh
dc.subject.por.fl_str_mv Cloud computing
Computação em nuvem
Eficiência energética
Encadeamento de funções de serviço
Energy efficiency
Network functions virtualization
Service function chaining
Virtualização de funções de rede
topic Cloud computing
Computação em nuvem
Eficiência energética
Encadeamento de funções de serviço
Energy efficiency
Network functions virtualization
Service function chaining
Virtualização de funções de rede
description Concerns about reducing energy consumption in the sector of Information and Communication Technology has increasingly motivated the transition of traditional services to the clouds. In this context, Network Functions Virtualization (NFV) emerges as a solution to migrate various network functions, from dedicated hardware devices to a virtual environment based on commodity hardware. With this virtualization, in addition to the promise of increasing energy efficiency, it is expected to reduce the financial cost and increase the flexibility and scalability of the networks. In this research, it is proposed the development of algorithms based on three metaheuristics (Standard Hill-Climbing, Simulated Annealing, and Memetic Algorithm) to schedule network functions in cloud data centers, observing not only the capacities and energy consumption of the computers where the functions will be executed but also of the network and switches that connect these computers. Comparing the algorithms proposed in relation to the Best Fit algorithm found in the literature, the one based on Simulated Annealing saved 55.44% of energy consumption in a datacenter with Three-tier topology and the one based on memetic algorithm saved 49.18% of energy consumption in a data center with Fat-Tree topology. To allow the reproduction of all the experiments carried out in this research, the codes developed are publicly available as free software
publishDate 2020
dc.date.none.fl_str_mv 2020-07-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-13082020-200722/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256941961674752